367 research outputs found
A 15.65 solar mass black hole in an eclipsing binary in the nearby spiral galaxy Messier 33
Stellar-mass black holes are discovered in X-ray emitting binary systems,
where their mass can be determined from the dynamics of their companion stars.
Models of stellar evolution have difficulty producing black holes in close
binaries with masses >10 solar masses, which is consistent with the fact that
the most massive stellar black holes known so all have masses within 1 sigma of
10 solar masses. Here we report a mass of 15.65 +/- 1.45 solar masses for the
black hole in the recently discovered system M33 X-7, which is located in the
nearby galaxy Messier 33 (M33) and is the only known black hole that is in an
eclipsing binary. In order to produce such a massive black hole, the progenitor
star must have retained much of its outer envelope until after helium fusion in
the core was completed. On the other hand, in order for the black hole to be in
its present 3.45 day orbit about its 70.0 +/- 6.9 solar mass companion, there
must have been a ``common envelope'' phase of evolution in which a significant
amount of mass was lost from the system. We find the common envelope phase
could not have occured in M33 X-7 unless the amount of mass lost from the
progenitor during its evolution was an order of magnitude less than what is
usually assumed in evolutionary models of massive stars.Comment: To appear in Nature October 18, 2007. Four figures (one color figure
degraded). Differs slightly from published version. Supplementary Information
follows in a separate postin
Dynamical Mean-Field Theory
The dynamical mean-field theory (DMFT) is a widely applicable approximation
scheme for the investigation of correlated quantum many-particle systems on a
lattice, e.g., electrons in solids and cold atoms in optical lattices. In
particular, the combination of the DMFT with conventional methods for the
calculation of electronic band structures has led to a powerful numerical
approach which allows one to explore the properties of correlated materials. In
this introductory article we discuss the foundations of the DMFT, derive the
underlying self-consistency equations, and present several applications which
have provided important insights into the properties of correlated matter.Comment: Chapter in "Theoretical Methods for Strongly Correlated Systems",
edited by A. Avella and F. Mancini, Springer (2011), 31 pages, 5 figure
Indication for the disappearance of reactor electron antineutrinos in the Double Chooz experiment
The Double Chooz Experiment presents an indication of reactor electron
antineutrino disappearance consistent with neutrino oscillations. A ratio of
0.944 0.016 (stat) 0.040 (syst) observed to predicted events was
obtained in 101 days of running at the Chooz Nuclear Power Plant in France,
with two 4.25 GW reactors. The results were obtained from a single 10
m fiducial volume detector located 1050 m from the two reactor cores. The
reactor antineutrino flux prediction used the Bugey4 measurement as an anchor
point. The deficit can be interpreted as an indication of a non-zero value of
the still unmeasured neutrino mixing parameter \sang. Analyzing both the rate
of the prompt positrons and their energy spectrum we find \sang = 0.086
0.041 (stat) 0.030 (syst), or, at 90% CL, 0.015 \sang 0.16.Comment: 7 pages, 4 figures, (new version after PRL referee's comments
Low oxygen affects photophysiology and the level of expression of two-carbon metabolism genes in the seagrass <i>Zostera muelleri</i>
© 2017, Springer Science+Business Media B.V. Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy coastal ecosystems. Despite its ecological importance, little is known about the pathways of carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this study, the response of Z. muelleri exposed to control and very low oxygen conditions was investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to measure changes in photosynthesis and respiration, and (ii) reverse transcription quantitative real-time PCR to measure changes in expression levels of key genes involved in C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the expression levels of phosphoenolpyruvate carboxylase and carbonic anhydrase. These molecular-physiological results suggest that regulation of the photophysiology of Z. muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating mechanisms metabolic pathways. Overall, this study highlights that the photophysiological response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the dynamic modulation of pathways should be considered when assessing seagrass primary production
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
H2S biosynthesis and catabolism: new insights from molecular studies
Hydrogen sulfide (H2S) has profound biological effects within living organisms and is now increasingly being considered alongside other gaseous signalling molecules, such as nitric oxide (NO) and carbon monoxide (CO). Conventional use of pharmacological and molecular approaches has spawned a rapidly growing research field that has identified H2S as playing a functional role in cell-signalling and post-translational modifications. Recently, a number of laboratories have reported the use of siRNA methodologies and genetic mouse models to mimic the loss of function of genes involved in the biosynthesis and degradation of H2S within tissues. Studies utilising these systems are revealing new insights into the biology of H2S within the cardiovascular system, inflammatory disease, and in cell signalling. In light of this work, the current review will describe recent advances in H2S research made possible by the use of molecular approaches and genetic mouse models with perturbed capacities to generate or detoxify physiological levels of H2S gas within tissue
‘Adaptive’ Psychosocial Factors in Relation to Home Blood Pressure: A Study in the General Population of Southern Netherlands
Colorectal cancer screening, perceived discrimination, and low-income and trust in doctors: a survey of minority patients
<p>Abstract</p> <p>Background</p> <p>Completion of colorectal cancer (CRC) screening testing is lower among low-income and minority groups than the population as a whole. Given the multiple cancer screening health disparities known to exist within the U.S., this study investigated the relationship between perceived discrimination, trust in most doctors, and completion of Fecal Occult Blood Testing (FOBT) among a low-income, minority primary care population in an urban setting.</p> <p>Methods</p> <p>We recruited a convenience sample of adults over age 40 (n = 282) from a federally qualified community health center (70% African American). Participants completed a survey which included measures of trust in most doctors, perceived discrimination, demographics and report of cancer screening.</p> <p>Results</p> <p>Participants reported high levels of trust in most doctors, regardless of sex, race, education or income. High trust was associated with low perceived discrimination (p < 0.01). The trend was for older participants to express more trust (p = 0.09) and less perceived discrimination (p < 0.01). Neither trust nor discrimination was associated with race or education. Trust was higher among participants over 50 who were up-to-date on FOBT screening vs. those who were not (31 vs. 29 (median), p < 0.05 by T-test). Among those over 50, up-to-date FOBT screening was nearly associated with high trust (p < 0.06; 95% CI 0.99, 1.28) and low perceived discrimination (p < 0.01; 95% CI 0.76, 0.96). Nevertheless, in multivariate-modeling, age and income explained FOBT completion better than race, trust and discrimination.</p> <p>Conclusion</p> <p>Perceived discrimination was related to income, but not race, suggesting that discrimination is not unique to minorities, but common to those in poverty. Since trust in most doctors trended toward being related to age, FOBT screening could be negatively influenced by low trust and perceived discrimination in health care settings. A failure to address these issues in middle-aged, low income individuals could exacerbate future disparities in CRC screening.</p
- …
