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ABSTRACT  

Seagrasses are a diverse group of angiosperms that evolved to live in shallow coastal waters, 

an environment regularly subjected to changes in oxygen, carbon dioxide and irradiance. 

Zostera muelleri is the dominant species in south-eastern Australia, and is critical for healthy 

coastal ecosystems. Despite its ecological importance, little is known about the pathways of 

carbon fixation in Z. muelleri and their regulation in response to environmental changes. In this 

study, the response of Z. muelleri exposed to control and very low oxygen conditions was 

investigated by using (i) oxygen microsensors combined with a custom-made flow chamber to 

measure changes in photosynthesis and respiration, and (ii) Reverse Transcription quantitative 

real-time PCR (RT-qPCR) to measure changes in expression levels of key genes involved in 

C4 metabolism. We found that very low levels of oxygen (i) altered the photophysiology of Z. 

muelleri, a characteristic of C3 mechanism of carbon assimilation, and (ii) decreased the 
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expression levels of phosphoenolpyruvate carboxylase (PEPC) and carbonic anhydrase (CA). 

These molecular-physiological results suggest that regulation of the photophysiology of Z. 

muelleri might involve a close integration between the C3 and C4, or other CO2 concentrating 

mechanisms metabolic pathways. Overall, this study highlights that the photophysiological 

response of Z. muelleri to changing oxygen in water is capable of rapid acclimation and the 

dynamic modulation of pathways should be considered when  

assessing seagrass primary production.    

INTRODUCTION  

Seagrasses are a diverse group of monocotyledonous angiosperms that evolved to live in the 

marine environment during the Cretaceous period, approximately 100 million years ago 

(Larkum and den Hartog 1989). There are approximately 72 seagrass species in 12 genera 

worldwide (Short et al. 2011) playing an important role in coastal ecosystems (Costanza et al. 

1997). Indeed, highly productive seagrass ecosystems provide food and shelter for 

commercially important fish (Beck et al. 2001) with temperate seagrass meadows in southern 

Australia estimated to supply onshore fisheries valued at $A 230 000 ha-1 y-1 (Blandon and Zu 

Ermgassen 2014),  and enhance sediment accretion (Koch et al. 2013). Seagrasses have also 

recently been identified as a major carbon sink, responsible for 10-18% of the Ocean’s carbon 

accumulation (McLeod et al. 2011; Fourqurean et al. 2012; Greiner et al. 2013).   

Many seagrasses are intertidal species which grow in shallow coastal lagoons and are therefore 

exposed to large variations in light and sediment loading/resuspension (Harlin 1995). 

Additionally, seagrasses are exposed to large fluctuations in oxygen levels, ranging from 71 to 

311 µmol L-1 under normal conditions (Brodersen et al. 2017) and as low as 10% (approx. 20 

µmol L-1) air saturation during night time in areas where seagrass die-offs were observed 

(Borum et al. 2005). They also have anatomical adaptations such as the absence of stomata and 

the development of extensive aerenchyma (Penhale and Wetzel 1983) along with physiological 



{ PAGE   \* MERGEFORMAT }  

  

adaptations such as the ability to tolerate hypoxic and anoxic conditions especially in the roots 

and rhizomes (Pregnall et al. 1984; Papenbrock 2012) which they possibly inherited from 

submerged freshwater ancestors (Les et al. 1997). As seagrass persistence generally require a 

large flux of photosynthetically active radiation, roughly 10% of surface irradiance 

(Papenbrock 2012), the effects of light on seagrass ecology have been extensively studied 

(Ralph et al. 2007; Staehr and Borum 2011; Brodersen et al. 2015;  

Chartrand et al. 2016). However, less attention has been given to the effects of photosynthetic 

gases and associated metabolic pathways in seagrasses, e.g., the effects of low O2 conditions 

have only been reported in a few papers to our knowledge (e.g. Black et al. 1976; Downton et 

al. 1976; Beer et al. 2002; Greve et al. 2003; Buapet et al. 2013).   

The photosynthetic processes of seagrasses are very similar to that of other angiosperms (Beer 

et al. 1998). Most seagrasses were classified biochemically as C3 plants on the biochemical 

criteria of short-term inorganic 14C incorporation products and the ratio of Ribulose-1,5-

bisphosphate carboxylase-oxygenase (RuBisCO) to phosphoenolpyruvate carboxylase (PEPC) 

activities, although Thalassia testudinum has C4 metabolism (Benedict and Scott 1976) and 

Halophila stipulacea has C3-C4 intermediate metabolism by these criteria (Beer et al. 1980; 

Beer et al. 2002; Koch et al. 2013). The C3 CO2 fixation process begins with RuBisCO which 

catalyses the carboxylation using CO2 (and H2O) of ribulose 1, 5-bisphosphate (RuBP), 

producing two of the 3 carbon molecules; 3-phosphoglycerate (PGA) as the initial stable 

product. In parallel there is the oxygenation of RuBP with O2 to yield one PGA and one 2-

phosphoglycolate. The ratio of carboxylase to oxygenase activity is determined by the kinetic 

properties of the molecular form of RuBisCO involved and the CO2:O2 ratio at the active site 

of RuBisCO.   
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The C4 carbon fixation process on the other hand, begins with the carboxylation (using HCO3
- 

as the immediate inorganic C substrate) of phosphoenolpyruvate (PEP) in the RuBisCO-free 

cytosol, forming the 4-carbon acid oxaloacetate as the initial stable product. Oxaloacetate is 

subsequently converted to malate and/or aspartate which are moved to, and decarboxylated in, 

the compartment containing RuBisCO, generating CO2 which is used in the carboxylation of 

RuBisCO, and a 3-carbon acid that returns to the cytosol, regenerating PEP. C4 photosynthesis 

involves a higher steady-state CO2 concentration than that available to RuBisCO in 

biochemically and physiologically defined C3 photosynthesis with diffusive entry of CO2 from 

the bulk external medium to RuBisCO, i.e., C4 photosynthesis acts as a CO2 concentrating 

mechanism (CCM). The regeneration of PEP to allow further PEPC activity is an energy (as 

ATP) requiring process. The C4 mechanism has an advantage over the C3 mechanism in low 

CO2 and/or high O2 environments as PEPC reacts specifically with CO2 (after its conversion to 

HCO3
-) with no interference from O2 and with accumulation of CO2 around RuBisCO that 

largely suppresses RuBisCO oxygenase activity. In C3 plants, to a much smaller extent, the 2-

phosphoglycolate from the oxygenase reaction is metabolised to  

PGA and then sugar phosphates in energy-requiring photorespiratory carbon oxidation cycle 

(PCOC); whether the oxygenase-PCOC combination physiologically decreases the energetic 

efficiency of C3 plants relative to C4 plants depends on the energy cost of oxygenase-PCOC 

relative to the cost of operating the C4 pathway with its inevitable leakage of CO2 from the pool 

accumulated around RuBisCO (Raven 2014; Raven and Beardall 2016; Larkum et al. 2017). It 

is important to note that the occurrence of any CCM gives physiological (not biochemical) 

characteristics similar to those of a C4 plant (Raven 2014; Raven and Beardall 2016, and 

references therein; Larkum et al. 2017). Thus, photosynthesis that is relatively insensitive to 

O2, has a high affinity for CO2 and can deplete the CO2 in a closed system to very low 
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concentrations and is not diagnostic of C4 photosynthesis since it could also result from any 

CCM activity.   

In marine plants, inorganic carbon species diffusion to the leaf surface has a greater potential 

to restrict the rate of photosynthesis due to the slower diffusion rates in water. Further, the 

primary form of dissolved inorganic carbon in seawater is HCO3
- (90%) with CO2 making up 

about 1% (see below). Hence a CCM would be advantageous for marine plants, for example, 

physiologically “C4-like” inorganic carbon acquisition has been observed in the seagrass  

Zostera noltii based on high light saturation values and a lack of observable photorespiration 

(Raven 1984; Jiménez et al. 1987); however, as noted by Raven (1984), this is not diagnostic 

of C4 rather than some other CCMs. By contrast Waghmode and Joshi (1983), using Halophila 

beccarii (as H. beccaeii), showed short-term inorganic 14C labelling of aspartate, and also 

alanine, i.e. features of C4 photosynthesis, although critics could say that the labelling period 

was not short enough to show the real initial product of inorganic C assimilation. Despite this, 

short-term inorganic 14C labelling is the most conclusive methods to indicate C4 photosynthesis 

in seagrasses. The high ratio of PGA phosphatase to 2phosphoglycolate phosphatase activity 

in H. beccarii (Waghmode and Joshi 1983) is consistent with a decreased RuBisCO oxygenase 

generating 2-phosphoglycolate, and hence decreased flux through the PCOC producing glycine 

and serine, and a requirement for the non-phosphorylated pathway from photosynthetic or 

glycolytic PGA to glycerate and hence to serine and glycine. However, the decreased RuBisCO 

oxygenase and concomitant requirement for the PGA to glycerate pathway to serine and 

glycine could occur in any organism with a CCM. Colman and Norman (1997) showed the 

occurrence of a phosphorylated pathway, not involving PGA phosphatase, from PGA to serine 

in cyanobacteria with CCMs and minimal 2-phosphoglycolate synthesis.  The occurrence of 

PEPC and aspartate aminotransferase in H. beccarii does not signify a C4 pathway, since these 

enzymes are ubiquitous in plants (Aubry et al. 2011). HCO3
- is the predominant inorganic C 
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species in seawater (at pH 8.16: 85.8% HCO3
-, 0.4% CO2 and 13.7% CO3

2-, Pierrot et al. 2006) 

with CO2 at about the same concentration (mol m-3of fluid medium) as in air. However, the 

diffusion coefficient for CO2
 in water is about 10-4 that in air (Raven 1984) so, despite the 

usually thinner diffusion boundary layer in water (~0.01-0.1 mm) than in air (~1 mm) under 

ecologically relevant conditions (Vogel 1994), CO2 diffusion to the leaf surface, and O2 

diffusion from the leaf surface (Mass et al. 2010) may limit photosynthesis in marine plants 

more than in land plants. Although the diffusion coefficient for HCO3
- is lower than that of CO2 

(Raven 1984), the quantitative predominance of HCO3
- in seawater means that it can support a 

larger flux to the leaf surface in response to a given potential for CO2 assimilation in the leaf, 

provided the leaf can use HCO3
-. Some seagrasses can utilise HCO3

- either directly via active 

transport into epidermal cells (Beer and Rehnberg 1997), or more commonly, indirectly by 

dehydrating HCO3
- to CO2 via the enzyme carbonic anhydrase (CA) in the epidermal cell wall 

(Beer et al. 1980) usually interacting with co-localised leaf surface acidification by energy-

requiring H+ efflux (Hellblom et al. 2001; Hellblom and Axelsson 2003; Borum et al. 2016). 

Such indirect methods for enhancing inorganic C (Ci) uptake make predictions of C4 

mechanisms in seagrasses doubtful unless supported by strong evidence.   

The suggestion that C4 photosynthesis does not occur in seagrasses because of the absence of 

bundle sheath cells containing chloroplasts and the lack of true Kranz anatomy (Beer et al. 

1980) has subsequently been shown to be invalid. Some freshwater submerged aquatic plants 

and some terrestrial C4 members of the Chenopodiaceae utilise C4 photosynthesis via the 

fixation of external inorganic C by PEPC, and the fixation of CO2 (regenerated from C4 acid 

decarboxylation) by RuBisCO, the carboxylases occurring in the cytosol and the chloroplasts 

respectively of a single cell (Voznesenskaya et al. 2001; references in Raven and Beardall 

2016).  
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With recent advances in genomics and transcriptomics, researchers have the capacity to 

examine molecular mechanisms which drive seagrass photosynthesis to an extent that was 

unimaginable just a decade ago. In this context, the presence of genes encoding enzymes 

characteristic of the C4 carbon fixation pathway in seagrass transcriptome could provide 

evidence relevant to the argument that seagrasses are not strictly C3 plants.   

For instance, several genes coding for PEPC, a cytosolic enzyme essential for the C4 carbon 

fixation pathway in higher plants (Chollet et al. 1996), have been identified in the transcriptome 

of Zostera muelleri (unpublished data). This enzyme catalyses the irreversible β-carboxylation 

of phosphoenolpyruvate (PEP) by HCO3
- to produce oxaloacetate (as described previously), a 

key intermediate in the C4 carbon fixation pathway. However, PEPC has a ubiquitous 

anaplerotic role in plants and algae (excluding dinoflagellates where PEPC is replaced by 

pyruvate carboxylase) in replenishing the intermediates of the Krebs cycle depleted by the use 

of oxaloacetate and 2-oxoglutarate in the synthesis of some amino acids and of pyrimidines 

haems and chlorins (Raven 1984; Raven and Farquhar 1990; Aubry et al. 2011; Raven 2014). 

Additional PEPC expression is needed in the roots of seagrasses growing on carbonate 

substrata in the production of organic acids that release phosphate from apatite in the carbonate 

sediment (Long et al. 2008; Raven 2014). Chi et al. (2014) show that there is at least 1 copy of 

each of 8 genes related to C4 photosynthesis and also to other aspects of metabolism in the 4 

completely sequenced tracheophytes (2 with C3 photosynthesis, 2 with  

C4 photosynthesis) and 1 completely sequenced C photosynthesis bryophyte. For PEPC, the 2 

C4 plants had 3 or 4 copies of the gene, while the 2 C3 plants have 4 or 6 copies. Therefore, the 

presence of the PEPC gene in the transcriptome of Zostera muelleri (unpublished data) does 

not show that Z. muelleri is other than, biochemically, a C3 plant.   

Furthermore, genes encoding CA were also detected in the Z. muelleri transcriptome  
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(unpublished data). CA catalyses the reversible interconversion of HCO3
- to CO2 (HCO3

- +  

H+ = CO2 + H2O). CAs are also involved in several non-photosynthetic reactions in plants  

(Raven 2014 and references therein), possibly including provision of respiratory CO2 to HCO3
- 

for the PEPC activity (Raven 2014) required for synthesis of the organic acids used, after 

secretion,  in phosphate release from carbonate substrata (Long et al. 2008; Raven 2014) in 

seagrass roots. One or more CAs are components of C4-based and other CCMs, as well as in 

C3 photosynthesis (Aubry et al. 2011; Raven 2014; Raven and Beardall 2016).  

However, expression of C4 photosynthetic metabolism in some submerged freshwater relatives 

of seagrasses is a function of environmental conditions (low CO2, high O2), unlike terrestrial 

C4 plants where it is constitutive (references in Raven and Beardall 2016).  

Therefore it is possible that the expression of some PEPC and CA genes in seagrasses varies 

with the O2 concentration and hence the potential for RuBisCO oxygenase activity, noting that 

the other light dependent O2 consuming reactions, i.e. the water-water (or oxygenoxygen) 

cycles of the Mehler Peroxidase reaction and of the oxidation by the plastid terminal oxidase 

of plastoquinone reduced by PSII, are minimal in the only seagrass (Zostera marina) 

investigated: Buapet and Björk (2016).  

The aim of this molecular-physiological study was to address the following: (i) how the 

photosynthetic and respiratory rates are affected by experimentally reduced O2 concentration 

in the water column using electrochemical microsensors and (ii) how this reduced O2 

concentration affects the expression levels of PEPC and CA using Reverse Transcription 

quantitative real-time PCR (RT-qPCR).   

MATERIAL AND METHODS  

Seagrass collection and experimental setup  
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Specimens of Zostera muelleri ssp. capricorni (Asch) S. W. L. Jacobs and attached marine 

sediment were collected from Pittwater, NSW, Australia (33° 38’ 45.6”S, 151° 17’ 12.8”E) on 

the 14th of May 2015. In order to mimic the conditions of Pittwater at the University of 

Technology Sydney (UTS) aquarium facility, salinity and temperature of the water were 

measured in the field; ambient salinity: 31 and water temperature: 22°C, along with rapid light 

curves of Z. muelleri to determine suitable light conditions. Rapid light curves measured in the 

field on 3 Z. muelleri plants using a Diving-Pulse Amplitude Modulated (PAM) fluorimeter 

(DIVING-PAM, Heinz Walz GmbH, Eichenring, Germany) indicated that photosynthetic 

saturating light was approximately 230 μmol photons m-2 s-1, which is  

consistent with saturating light levels previously found for this seagrass species in temperate 

regions (Schwarz 2004; Bulmer et al. 2016). Collection was performed at low tide in shallow 

water (~1 m) and plants were transported immediately to an aquarium facility at the University 

of Technology Sydney. Before further handling, the specimens and sediment were placed into 

aquaria for 48 hours, after which they were separated into individual ramets/shoots (see 

Procaccini et al. 2007). These samples were then acclimated for 2 months in 40 L glass aquaria 

to conditions mirroring that of the sampling site e.g.: a salinity of 31, temperature of 22±1°C 

and illumination with an incident photon irradiance of ~230 µmol photons m-2 s-1 (12 h : 12 h 

light : dark cycle). Sixteen individual shoots of Z. muelleri were then transplanted in pairs into 

8 plastic tanks (~150 mm in diameter, 4 tank replicates per treatment) with ~30 mm of sediment 

and acclimated at the same environmental conditions as above for 2 weeks.   
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The experiment was initiated in the middle of the photoperiod. Each of the treatments (i.e. 

control and low O2) had one 100 L sump (100 L plastic bin) underneath a 40 L aquaria/table 

that held experimental plastic containers (Supplementary Figure S1). From each sump, water 

with corresponding O2 level was pumped into four replicate plastic containers resulting in a 

total of 8 containers (4 replicate containers x 2 sumps/O2 treatments = 8 containers in total).  

Each container contained 2 individual shoots of Z. muelleri (8 tanks x 2 shoots = 16 shoots). 

For the low O2 treatment, the dissolved O2 was lowered in the sump over an interval of 1 h via 

flushing with nitrogen gas (CO2-free) to an average O2 concentration of ~9 µmol O2 L
-1 as 

measured by a calibrated dissolved O2 probe (FDO 925, WTW GmbH, Germany). The 

dissolved O2 concentration within the aquaria was maintained between 9 and 16 µmol O2 L
-1 

for the duration of the experimental period of 24 h (Supplementary Figure S2). Deviations from 

the initial pH of 8.16 (+/-0.01 pH) was controlled via bubbling of 99.9% pure CO2, which was 

automatically controlled by a calibrated pH/CO2 controller (7074/2, TUNZE Aquarientechnik 

GmbH, Germany, Supplementary Figure S3). The control tank set up was the same except for 

bubbling air instead of N2 and CO2.  

Oxygen measurement setup  

The lower half of leaf 2  (~20 mm) were cut from 3 individual ramets/shoots (see Procaccini et 

al. 2007) randomly picked from a pool of untreated samples which were previously subjected 

to the same acclimation procedure. The leaf sections were cleaned of any epiphytes and  then 

fixed in place with fine pins on a piece of styrofoam in a custom-made flowchamber (see 

Brodersen et al. 2014) . The sections were angled in such a way as to allow for unobstructed 

flow over each of the sampling areas of the leaves. Illumination of the leaves to the desired 

light levels was achieved via a fibre-optic tungsten halogen lamp (KL-2500LCD,  

Schott GmbH, Germany) with the irradiance measured at the leaf surface using a 4π quantum 

sensor (US-SQS/L, Walz GmbH, Germany) connected to a calibrated light meter (LI-250A, 
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LI-COR Inc., USA). Seawater was pumped through the flow chamber at a constant rate of ~5 

mm s-1 for the duration of the experiment. Atmospheric air was bubbled during the control 

phase of the experiment, while nitrogen gas was bubbled during the treatment phase of the 

experiment, lowering the O2 concentration from ~231 µmol O2 L
-1 to ~9 µmol O2 L -1 (as 

described above). Salinity, temperature and pH of the seawater were kept constant throughout 

the experiment.   

Vertical O2 concentration micro-profiles towards the leaf tissue surface (approx. 0.031 cm2) 

and thus across the diffusive boundary layer (DBL) were recorded using a Clark-type O2 

microsensor (OX-50, tip diameter approx. 50 μm; Unisense A/S Aarhus, Denmark; Revsbech, 

1989) with a fast response time (<0.5 s) mounted on a motorized micromanipulator (Unisense 

A/S, Aarhus, Denmark). The microsensor was connected to a multimeter (Unisense 

Microsensor Multimeter A/S. Aarhus, Denmark) and interfaced with a PC running dedicated 

data acquisition and positioning software (SensorTrace PRO; Unisense A/S, Aarhus, 

Denmark). The microsensor was positioned at the leaf tissue surface (defined as 0 µm) 

manually by observing the microsensor tip and leaf tissue surface through a stereomicroscope 

mounted on an articulating arm. Subsequent measurements of vertical O2 concentrations for 

micro-profiles were measured at 100 µm increments using the motorised micromanipulator 

(Unisense Motorised Micromanipulator A/S, Aarhus, Denmark) controlled by dedicated 

positioning software (SensorTrace PRO). Linear calibration of the O2 microsensor was 

obtained from signal readings in 100% air-saturated seawater and anoxic seawater (seawater 

amended via N2 bubbling and the O2 scavenger sodium dithionite) at experimental salinity, pH 

and temperature.   

Seagrass maximum quantum efficiency of photosystem II (Fv/Fm; Baker 2008)  values were 

measured regularly on 3 biological replicates using a Pulse Amplitude Modulated (PAM) 

fluorimeter (Pocket PAM, Gademann Instruments, Wuerzburg, Germany, see Figueroa et al. 
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2013) after dark-adaptation for ~10 min. Minimal fluorescence (F0) was recorded using a weak 

measuring light, which was then followed by a saturating pulse (irradiance of 3,500 μmol 

photons m-2 s-1 for 0.8 s) to measure maximal fluorescence (Fm). Under these conditions, 

Fv/Fm ratios provides a measure of maximal PSII photochemical efficiency (Fv=Fm-F0) and 

were, in this experiment, used as an indicator of seagrass maximum quantum efficiency of PSII 

during experimentation.  

Photosynthesis-Irradiance (P-I) curves  

Established methods for determining rates of photosynthesis in marine plants via O2 

microsensors were used in this study (see Jørgensen and Revsbech 1985; Kühl et al. 1995; 

Lichtenberg and Kühl 2015; Pedersen et al. 2016). The effective DBL thickness was estimated 

by extrapolating the linear O2 concentration gradient until it intersects with the constant O2 

concentration in the overlaying water. These O2 micro-profiles determined at the leaf tissue 

surface in the flow chamber were measured at incident photon irradiances of 0, 25, 50, 100, 

200, 500 and 700 µmol photons m-2 s-1, first under control conditions (aerated seawater, 31 

salinity, 22±1°C and pH 8.16). Leaves were then exposed to treatment conditions (~9 µmol O2 

L-1, 31 salinity, 22±1°C and pH 8.16) at the beginning of the subsequent light cycle for 3 h 

before measurements were taken at incident photon irradiances in the following order: 25, 50, 

100, 200, 500, 700 and 0 µmol photons m-2 s-1. Leaves were allowed to equilibrate to each of 

the incident photon irradiances for 30 mins before O2 microprofiles were recorded.  

Based on the measured O2 concentrations around the leaf tissue surface, O2 fluxes were 

calculated using Fick’s first law of diffusion:  

  
where D0 is the diffusion coefficient of O2 in seawater at the experimental salinity and 

temperature (2.2088 x 10-5 cm-2 s-1; tabulated values taken from {  HYPERLINK 

http://www.unisense.com/
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"http://www.unisense.com/" \h }{ HYPERLINK "http://www.unisense.com/" \h } and  is the 

gradient of the linear O2 concentration within the DBL.   

The measured O2 fluxes across the leaf surface, which are the equivalent of rates of net 

photosynthesis, were then fitted with an exponential saturation model (Webb et al. 1974; 

Lichtenberg and Kühl 2015) using OriginPro (OriginLab, USA) with the added respiration 

term, R, to account for O2 consumption (Spilling et al. 2010):  

  

where α is the initial slope of the P-I curve in the light-limiting phase, Pmax is the maximum net 

photosynthetic rate and R is the respiration term.  

This allowed for calculations of the minimum photosynthetic saturation irradiance (Ek), which 

gives an indication of the onset of photosynthesis saturation, and the compensation irradiance 

(Ec), that is, where the O2 produced via photosynthesis equals the respiratory demands, using 

the following equations (e.g. Lichtenberg and Kühl 2015):  

  

  

  

  

Sample collection, RNA extraction and cDNA synthesis  

Four biological replicate samples of Z. muelleri were randomly collected for each time point 

(0 and 24 h) and for each treatment (control and low O2). Samples included above-ground tissue 

(i.e. leaf biomass) only, as this part of the plant is likely to respond more immediately, being 

photosynthetically active and in direct contact with molecular O2 in the water-column.  

http://www.unisense.com/
http://www.unisense.com/
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Samples were packed in aluminium foil envelopes and snap-frozen directly in liquid nitrogen. 

Samples were stored at -80°C for 15 days prior to further RNA extraction and RT-qPCR 

analysis. Briefly, for each sample, ~70 mg of freeze-dried leaf biomass was grounded into 

powder using a mortar and pestle in liquid nitrogen. RNA was then extracted using the  

PureLink RNA Mini Kit (Ambion) following manufacturer’s instructions. Column  

purification DNAse digestion was carried out using PureLink DNase Set (Ambion) following 

the manufacturer’s instructions. The RNA quantity and quality was assessed using a 

spectrophotometer (NanoDrop 2000) and absorbance at 260/280 nm. Good quality RNA 

samples were stored at -80°C for further RT-qPCR experiments. A total of 500 ng of good 

quality RNA was used for each sample for cDNA synthesis using the High-Capacity cDNA  

Reverse Transcription Kit (Applied Biosystems) following manufacturer’s instructions. The 

resulting cDNA samples were diluted 1:20 for use in RT-qPCR analysis.   

Primer design  

The present study conforms to the Minimum Information for Publication of Quantitative Real-

Time PCR guidelines (Bustin et al. 2009). In this section, we indicate the essential information, 

sensu Bustin et al. (2009), required to allow reliable interpretation of the corresponding RT-

qPCR results.  

In-depth analysis of Zostera muelleri Transcriptomics Database (Hayward et al, in prep), 

revealed transcripts encoding proteins with high similarities to the domains of PEPC and CA 

proteins already identified in the seagrass Zostera marina (Olsen et al. 2016). It is interesting 

to note that the genome of Z. muelleri, which was not available at the time of this study, has 

been published since (Lee et al. 2016). The functional domains of three of these sequences, 

coding for PEPC1 (KMZ56135), PEPC2 (KMZ58048) and -CA (KMZ56166) respectively, 

were used as a template to design sequence-specific primers for RT-qPCR using the software, 

Primer3 0.4.0 (Koressaar and Remm 2007; Untergasser et al. 2012) with default settings. The 
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sizes of the resulting amplicons were kept from 79 to 195 bp (Table 1) ensuring similar PCR 

efficiencies and facilitating cross comparison of assays. The specificity of each selected primer 

pair was observed by PCR amplification as single bands at the expected size resolved via 

agarose gel electrophoresis.   

Reverse Transcription Quantitative Real Time - PCR and Gene Expression Analysis  

SYBR green PCR master mix (Warrington, Cheshire, UK) was used for RT-qPCR assays in  

96-wells plates in a Step One PlusTM Real-Time PCR System (Applied Biosystems, USA). PCR 

conditions were: initial denaturation of 10 min at 95°C, followed by 50 cycles of 95°C for 30 

s, 60°C for 30 s and 68°C for 30 s. A dissociation step was included at the end: 95°C for 15 s, 

60°C for 1 min and 95°C for 15 s. The final reaction volume was 10 µL, including 0.8 µL of 

primers (Table 1) and all reactions were conducted in technical triplicates. The RTqPCR 

efficiency for each gene and each treatment was determined from a cDNA dilution gradient of 

27, 9, 3 and 1 ng and a linear regression model (Pfaffl 2001). The corresponding  

RT-qPCR efficiencies were calculated according to the equation below (Radonić et al. 2004):   

  

  

All the RT-qPCR efficiencies obtained with the different primers were between 96-104%, with 

a calibration coefficients >0.969 (Table 1, see Supplementary Figure S4). A no template 

control, as well as a no reverse transcription control was generated for each gene and each 

treatment to ensure that the PCR reactions were free of DNA contamination.   

Data from RT-qPCR was analysed using the Step One PlusTM Software (Ver. 2.3; Applied  

Biosystems). Expression levels were determined as the number of cycles needed for the 

amplification to reach a fixed threshold in the exponential phase of the RT-qPCR reaction. The 
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cycle threshold (CT) was set at 0.03 for all genes. To quantify changes in target genes 

expression, CT were imported then transformed into quantities using corresponding RT-qPCR 

efficiency to obtain Normalized Relative Quantities.  

Selection of reference genes  

In order to select the best reference genes for the experimental conditions, expression stability 

was analysed using NormFinder (Andersen et al. 2004). The corresponding CT values were 

used directly in the software package NormFinder (Andersen et al. 2004) to rank and select the 

most stable reference genes. Candidate reference genes and corresponding primers used in this 

study were identified previously (Schliep et al. 2015). Because these candidates reference genes 

were initially validated under low light stress conditions, we used NormFinder to measure their 

stability value during low O2 exposure (i.e. direct measure for the estimated expression 

variation) as previously described by (Andersen et al. 2004). We also ran complementary 

analysis using a second software (GeNorm, Vandesompele et al. 2002) which led to similar 

results as for NormFinder. According to Normfinder, the most stable genes under our 

experimental conditions were GADPH, Actin and S4 and the best combination of two reference 

genes: S4 and GADPH (see Supplementary Figure S5) was then used to normalize target gene 

expression profile in Z. muelleri under low O2.   

Statistical analyses  

Statistical analyses were performed using a Repeated Measures Analyses of Variance with 

PERMANOVA+ software in PRIMER v6 (Anderson et al. 2008). The analyses tested the null 

hypothesis that there is no difference in the α, Pmax, R, Ek and Ec values derived from the fitted 

P-I curves of the control and low O2 treated leaves. The RT qPCR data was analysed in the 

same way to test the null hypothesis that there is no difference in the normalized relative 

quantities of PEPC1, PEPC2 and γ CA in control and low O2 treated plants. We randomized 
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our sampling within each treatment to minimize lack of independence and to separate the two 

O2 levels from other potential effects originating from containers location on the table. 

Throughout this paper, values given for microsensor data are the mean of 3 biological 

replicates, while RT-qPCR data are the mean of 4 biological replicates, including technical 

triplicates. Results were considered significant at 5%.  
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RESULTS  

Rates of net photosynthesis and P-I curves  

The vertical O2 concentration micro-profiles showed a ~0.02 cm thick DBL at the leaf surface 

of Z. muelleri at all irradiances tested in both the control and low O2 conditions (Figure 1). The 

average O2 concentration at the leaf tissue surface of the control plants increased from 203 to 

352 µmol O2 L
-1 as a response to an increasing incident irradiance from 0 to 100 µmol photons 

m-2 s-1, as compared to an increase from 3.6 to 187 µmol O2 L
-1 in the low O2-treated plants. 

This translated to statistically different O2 flux values between the control and low O2 treated 

plants at incident photon irradiances of 0, 25 and 50 µmol photons m-2 s-1 (Permutational t-test, 

t4= 4.7575, P= 0.0026; t4= 12.526, P= 0.0002; t4= 5.4299, P= 0.0032 respectively, Figure 2,). 

Comparison between the dark respiration rates (R) and the initial slope of the P-I curve (α), 

which gives an indication of photosynthetic activity, of the control and low O2 treated plants 

also indicated statistical difference (Permutation t-test between control and low O2 treated 

plants for R and α; t4= 6.8879, P=0.0018; t4= 5.2964, P= 0.0064 respectively, Table 2); with 

a decrease in R but an increase in α.  

In contrast, between incident irradiances of 200 to 700 µmol photons m-2 s-1, there was only a 

slight increase of ~2 µmol O2 L
-1 in the control plants, from 386 to 388 µmol O2 L

-1, and an 

increase of ~50 µmol O2 L
-1 in the low O2 treated plants from 194 to 246 µmol O2 L

-1. This 

translated to net oxygen flux values that were not statistically different among the 200, 500 and 

700 µmol photons m-2 s-1 irradiance treatments (Permutational t-test, t4= 2.2527, P=  

0.088; t4= 0.65804, P= 0.5314; t4= 1.147, P= 0.306 respectively, Figure 2). The calculated 

Pmax values in the control and low O2 treated plants, derived from the fitted P-I curves, were 

also not statistically different (Permutational t-test, t4= 0.2956, P= 0.7974, Table 2).  
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Calculations of the Ek of Z. muelleri plants, in the control and low O2 conditions, yielded an 

average saturation irradiance of ~60 and 51 µmol photons m-2 s-1 respectively (Table 2), values 

that are not statistically different (Permutational t-test, t4= 1.2571, P= 0.2892, Table 2); 

however, there was a statistically significant decrease in the Ec between the control plants and 

low O2 treated plants (Student’s t-test, t4= 6.5624, P= 0.0012, Table 2) which were calculated 

to be at incident irradiances of ~5.19 and 0.71 µmol photons m-2 s-1, respectively (Table 2).  

Expression levels of target genes  

Among the 7 candidate reference genes tested, the best combination of two reference genes 

included S4 and GADPH gene (M=0.185; see Supplementary Figure S5). These two  

reference genes were then used to evaluate target gene expression profile in Z. muelleri under 

low O2. The relative quantification demonstrated a significant down-regulation of the PEPC-1 

and γ-CA genes for seagrass incubated in low O2 when compared to control (Figure 3). 

Specifically, there was a ~2.2 fold decrease in PEPC-1 gene expression in low O2 treated 

samples relative to control (Permutational t-test, t6= 2.9916, P= 0.0188, Figure 3). Similarly, 

a ~2.8 fold decrease was observed in γ-CA (Permutational t-test, t6= 3.3414, P= 0.0072: Figure 

3). No statistical difference was observed in the expression level of the PEPC-2 gene 

(Permutational t-test, t6, P= 0.0664, Figure 3), although a decreasing trend was observed in 

low O2 treated samples when compared to the controls.    

  

DISCUSSION  

Photosynthetic parameters  

We observed that by lowering the O2 concentration in the water-column, the net photosynthetic 

rates of Zostera muelleri were enhanced in the light limited region of the P-I curve (Figure 2). 

Further, we confirmed that these results were not due to impacts on the health of the Z. muelleri 
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photosystems as shown by the Fv/Fm which remained ≥0.7 for the duration of the experimental 

period (as measured via PAM-fluorometry, see Supplementary  

Figure S6). This shows that Z. muelleri has a higher photosynthetic activity with an increased 

CO2:O2 ratio; conditions which potentially could lead to a decreased oxygenase activity of 

RuBisCO and decreased flux through the PCOC, while increasing carboxylation. Similar 

studies involving other marine angiosperms such as Cymodocea rotundata, Zostera marina and 

Ruppia maritima support our findings since the net photosynthetic rate in these plants also 

increased in response to reduced ambient O2 concentrations (Black et al. 1976; Downton et al. 

1976; Beer et al. 2002; Buapet et al. 2013) whereas low O2 conditions had no effect on the 

gross photosynthetic rate of a green alga Ulva intestinalis due to suppressed photorespiration 

(Drechsler and Beer 1991; Beer et al. 2000) via the maintenance of a carbon concentrating 

mechanism (Björk et al. 1993; Larsson et al. 1997). In addition, within the lacunae of seagrass 

leaves in light conditions, Carlson et al. (1988) and Roberts and Moriarty (1987) found that O2 

accounted for 38% of the gas within these lacunae, leading to the hypothesis that seagrass 

leaves may possess a mechanism to minimise photorespiration by inhibiting the accumulation 

of intracellular O2. These data show the photosynthetic behaviour of Z. muelleri is typical of a 

plant with C3 biochemistry and physiology in low O2 conditions.  

We also found a statistically significant decrease in the dark respiration and the subsequent 

compensation irradiance of the low O2 treated leaves (Table 2), which was not so surprising 

owing to the low ambient O2 availability. A similar effect has been observed in the dark 

respiration of Z. marina when exposed to low O2 conditions (Buapet et al. 2013). This is 

believed to be the result of the reduced O2 availability in the surrounding environment and since 

O2 transport to the lacunae ceases after 15 to 30 mins following the onset of darkness (Smith 

et al. 1984) and the O2 concentration of the air in the lacunae drops down to <1% of the air 

around the leaf (Carlson et al. 1988), respiration is decreased. Hence, respiration is an important 
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factor to take into account when interpreting photosynthetic activity and efficiency responses 

to changing environmental conditions. Indeed, the effect of low O2 levels on net photosynthetic 

rates seen in this study could be solely due to a decreased rate of respiration, particularly as the 

only statistically significant differences between control and low O2 treatments were in the 0, 

25 and 50 µmol photons m-2 s-1 irradiances where respiration strongly affects the rate of net 

photosynthesis, while no statistical difference is seen at the higher irradiances where 

photorespiration would be expected to have stronger effects (Beardall et al. 2003).  

While there appears to be a slight increasing trend in the rate of photosynthesis in the light 

saturated section of the P-I curve, there was no statistical difference in the saturating irradiance 

and maximum net photosynthetic rate between the low O2 treated and control leaf fragments 

(Figure 2; Table 2). As the pH (and subsequently dissolved inorganic carbon; DIC) was 

maintained at 8.16 throughout the experiment, our results suggest that the growth of Z. muelleri 

was C-limited and this is consistent with previous findings on other seagrass species (Björk et 

al. 1997; Zimmerman et al. 1997). With regards to the DIC in seawater, speciation depends on 

the salinity and temperature, but the main form present at pH 8.16 is HCO3
- (Pierrot et al. 2006), 

and HCO3
- is expected to be the major inorganic C source for photosynthesis in seagrasses. 

Additional experimentation have shown seagrass to be capable  

of utilizing HCO3
- by means other than uncatalysed conversion of HCO3

- to CO2 in the DBL  

(Larkum et al. 2017), such as Halophila stipulacea, Thalassodendron ciliatum, Halodule 

uninervis and Syringodium isoetifolium (Beer et al. 1977; Koch et al. 2013; Borum et al.  

2016), however the exact method of HCO3
- uptake remains unclear (Larkum et al. 2017). 

Moreover, at high photon irradiances O2 produced via photosynthesis results in similar O2 

microclimates in and around leaves within both treatments, owing to an internal and external 

build-up of O2 as a result of the leaf DBLs impeding gas exchange with the surrounding water 

column (Brodersen et al. 2015). This may therefore explain the similar maximum net 
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photosynthesis rates measured in the low O2 and control treatment at photon irradiances ≥100 

µmol photons m-2 s-1 (Fig. 1-2; Table 2). One further point that should not be overlooked is that 

seagrasses, and many submerged freshwater flowering plants, have photosynthesis almost 

entirely confined to the epidermis (Larkum et al. 2017). How this anatomical feature affects 

photosynthesis has been little explored, but its presence in a group of fairly diverse organisms 

that span several families suggests that it may be important and may affect photosynthesis. 

Therefore before accepting that seagrasses possess a C4 metabolism, other explanations should 

be sought and in this search, gene expression is an important tool.   

Gene expression  

Within the transcriptome of Z. muelleri, we discovered the presence of two different isoforms 

of PEPC; PEPC-1 and PEPC-2. Molecular differences coupled with differences in phylogenetic 

relations and gene structure between the two isoforms (Sánchez and Cejudo 2003) have 

suggested functional differences between the different isoforms in terrestrial plants. However 

the operation of these isoforms remains to be explored in marine angiosperms. When Z. 

muelleri plants were exposed to low O2 conditions, we found a significant 2.2-fold decrease in 

PEPC-1 gene expression (Figure 3). In the terrestrial plant Arabidopsis, suppression of an 

isoform of PEPC via artificial microRNA (amiRNA) impaired root elongation and improved 

salt tolerance via increasing total PEPC activity (Wang et al.  

2012). Little is known about the functionality of this isoform, while we recommend examining 

the effect of down regulation of PEPC-1 in Z. muelleri, the technique for genetic manipulation 

has not been established in Z. muelleri so far.  In addition, although there was no statistical 

difference found in the expression of PEPC-2 in this study (Figure 3); there was a decline in 

response to low O2 conditions. As mentioned in the introduction, although PEPC activity has 

been widely invoked as evidence of C4 metabolism in aquatic autotrophs, it is also used to feed 

anaplerotic pathways that produce essential growth compounds such as amino acids (Aubry et 
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al. 2011). Therefore, it is possible that the down- regulation of PEPC under low O2 reflects a 

decreased rate of Krebs cycle throughput however, as we only investigated the expression 

levels of PEPC as opposed to the activity level of the enzyme in response to low O2, it is 

important that the implications of these results are not overly extrapolated. Overall, our results 

indicate that, when exposed to low water-column O2, Z. muelleri plants (i) increase their 

photosynthetic activity, a characteristic of C3 plant photosynthesis and (ii) down-regulate genes 

coding for PEPC, suggesting that these low O2 conditions yield lower energy costs of 

photosynthesis.   

HCO3
- can be utilised through extracellular dehydration via CA (Millhouse and Strother 1986a; 

Beer and Rehnberg 1997; Invers et al. 2001), although this alone does not constitute a CCM 

(Larkum et al. 2017). In the case of Z. muelleri, inhibition of CA activity via acetazolamide (a 

membrane-impermeant CA inhibitor, so only inhibiting extracellular CA) has been shown to 

inhibit photosynthetic use of HCO3
- (Millhouse and Strother 1986b; Koch et al. 2013; Borum 

et al. 2016). Of the 5 known independently evolved classes of CA (α, β, γ, δ and ζ; Tripp et al. 

2001) and the recently described η class (Del Prete et al. 2014), we investigated the expression 

levels of γ-CA. For this, γ-CA was selected as the sub-complexes are contained in the 

respiratory complex 1 (NADH:ubiquinone oxidoreductase) of plants and algae and in the 

mitochondrial respiratory electron transport chain, with sub-complexes serving as the entry 

point of electrons, potentially playing a role in photorespiration, probably as a HCO3
- 

transporter rather than as a normal CA (Braun and Zabaleta 2007; Martin et al. 2009). In 

agreement with photosynthetic response and regulation in PEPC genes, the significant down 

regulation of γ-CA genes (2.8-fold decrease: Figure 3) observed in Z. muelleri plants exposed 

to low O2 suggests that this enzyme might be more critical for photosynthesis under ambient 

O2 levels (i.e. lower DIC:O2) then under low O2 levels.   
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In the freshwater aquatic monocot Hydrilla verticillata, C4-type photosynthesis is induced in 

C3-type photosynthesising leaves under warmer temperatures, limited CO2, increased O2 and 

high photon irradiances (Bowes and Salvucci 1989). In this way, aquatic plants could have the 

capacity to acclimate to a changing climate, therefore highlighting the need to better understand 

these mechanisms especially in keystone seagrass species such as Z. muelleri.  

Experimental manipulation of photosynthesis in aquatic organism can be complex as several 

factors need to be carefully considered. Firstly, avoiding pseudo-replication at the 

chamber/aquarium level is certainly desirable. In this respect, we recognize the limitations of 

our experimental design as each of the treatments (i.e. control and low O2) had one sump  

(100L plastic bin) feeding plastic container replicates, which is not ideal for full replication. 

However, we have used 4 container replicates for each treatment and we have randomized our 

sampling within each treatment to ameliorate some of the risks (Hurlbert 1984) and to separate 

the two O2 levels from other potential effects originating from container replicates location on 

the table. This type of design is commonly used in experiments simulating ocean acidification 

(Sinutok et al. 2011; Sinutok et al. 2012; Sinutok et al. 2014). Secondly, it is also important to 

make sure that the experimental procedure does not affect multiple components of water 

chemistry, particularly inorganic carbon levels within different treatment tanks. While we did 

not perform any alkalinity measurements during the experiment, we can be confident that the 

various forms of inorganic carbon were in equilibrium during our experiment for the following 

reasons:   

i) The O2 level in both the treatment and control tanks was stable throughout the 

experimental period (Supplementary Figure S2).  

ii) 99.9% pure CO2 gas was used in the treatment tank to control the pH which was done 

via a pH controller connected to a pH/CO2 controller (7074/2, TUNZE Aquarientechnik  
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GmbH, Germany), to maintain the same pH of 8.16 in both tanks (Supplementary Figure S3). 

This calibrated pH probe constantly measures the pH of the aquaria whereupon as pH starts to 

increase due to the flushing of nitrogen gas displacing the dissolved CO2, subsequently 

reducing the concentration of HCO3
-, the controller immediately switches on the CO2 gas to 

stop the deviation and return the pH back to the experimental level (display accuracy of +/- 

0.01 pH). Since this process occurs continuously, the pH deviates between 0.01-0.05 

throughout the experimental period and these deviations were rectified automatically over 

several seconds.   

iii) The tanks were kept in a temperature controlled room and salinity was kept constant 

throughout the experimental period.   

iv) The time required for the various forms of inorganic carbon to reach equilibrium in 

seawater is at most 10s (see Zeebe and Wolf-Gladrow 2001).  

This is the first study to combine microsensors and gene expression analyses to investigate 

responses to low O2 in Z. muelleri and further studies with more sophisticated experimental set 

up are clearly needed to give more informative results.  

Conclusion  

Ambiguous metabolic properties such as the ability to use HCO3
- and a C4-type photosynthetic 

quantum efficiency have led to some seagrass species being classified as C3C4 intermediate 

plants (Beer et al. 1980; Beer and Wetzel 1981; Bowes and Salvucci 1989).  

We suggest that the photosynthetic classification of Z. muelleri should also be carefully 

considered, as our results indicate that (i) ambient levels of O2 affect the photophysiology of 

this seagrass, a characteristic of C3 plants, and (ii) low O2 levels induce the down-regulation of 

PEPC and -CA genes. While regulation of these genes might not be strictly associated with a 

C4 biochemistry, our data suggests that when the conditions are favourable for the 
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carboxylation reaction of RuBisCO, Z. muelleri down-regulates its CCM(s), thus altering its 

photophysiology. Future work involving the precise measurement of photorespiration and 

respiration is needed to show how photorespiration and respiration affect the photosynthetic 

response of seagrass to low O2. Furthermore, localization and activity of PEPCs, γ-CA and 

Rubisco and measurements of short-term (2-5 seconds) inorganic 14C labelling products, is 

needed to show some type of compartmentalization between initial HCO3
- incorporation via 

PEPC and the final fixation of CO2 via Rubisco, thereby supporting or not the role these 

enzymes play in the physiology of seagrasses. This research is not only needed to enable 

development of testable hypotheses to better direct future research, but also to improve the 

management and protection of these environmentally important marine angiosperms.   
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Table 1. Reference genes and target genes investigated in Zostera muelleri by using RT-qPCR.  Accession numbers of the closest sequence 857 

matches available online in the data repository for Zostera marina EST ({ HYPERLINK "http://drzompo.uni-muenster.de/" \h }{ HYPERLINK 858 

"http://drzompo.uni-muenster.de/" \h }{ HYPERLINK "http://drzompo.uni-muenster.de/" \h }{ HYPERLINK "http://drzompo.uni-muenster.de/" 859 

\h } primers sequences, amplicon length, melting temperature, geometric mean of cycle threshold (CT) and RT-qPCR efficiency are indicated. 860 

GADPH: Glyceraldehyde 3-phosphate dehydrogenase; EloF: Translation initiation factor 1 subunit beta; Calmodulin; TubB: Tubulin beta-1 861 

chain; Actin; PolyA: Poly(A) RNA polymerase; S4: 30S ribosomal protein S4; PEPC-1: Phosphoenolpyruvate carboxylase – isoform 1; PEPC-2: 862 

Phosphoenolpyruvate carboxylase – isoform 2 and γ-CA: γ Carbonic anhydrase.  863 

 864 

Name  Accession  Forward primer  Reverse primer  Length Tm  CT  Efficiency number  (bp)  (%)  865 

GAPDH  Zoma_C_c6252  CGGTTACTGTAGCCCCACTC  CAAAGGCTGGGATTGGTTTA  79  59.9  25  88  

EloF  Zoma_C_c59090  AAGCAAAGGCGTCACTTGAT  TCTGCTGCCTTCTTCTCCTC  82  59.9  24  104  

Calmodulin  Zoma_B_i07192  ATCCATCCTGGTCTTTGTCG  CACTGTGATCCACTCGTTGG  197  60.1  23  114  

TubB  Zoma_Contig120  GGACAAATCTTCCGTCCAGA  TCCAGATCCAGTTCCACCTC  195  60  24  88  

Actin  Zoma_ZMF02257  TAAGGTCGTTGCTCCTCCTG  ACTCTGCCTTTGCAATCCAC  104  60.4  26  110  

PolyA  Zoma_C_c36619  GCTGCTCGTTCAAATTCCTC  ATGACCGCCATTTAATCTGC  112  59.9  29  93  

S4   Zoma_Contig219  ATGGTCTGACAGAGCGACAA  TGTTATCCAAACGCATCTCG  108  59.7  29  114  

PEPC-1  KMZ56135  AGGCAAAATTCGGACTTCCT  GAGGACGCAGTGTTGACAGA  84  60.1  29  99  

PEPC-2  KMZ58048  TGGCTGTTGTAGCCACTGAG  TCTGTCTCTGGTGTGGCAAG  91  60  28  97  

γ-CA  KMZ56166  AGGTCATGGTGCTGTCCTTC  CAGCAACCATTCCGTTCTTT  110  60.1  28  104  

38  866 

  867 

Table 2. The initial slope of the P-I curve in the light-limiting phase (α), maximum net photosynthetic rate (Pmax), dark respiration rate (R), 868 

compensation irradiance (Ec) and minimum saturating irradiance (Ek) in Zostera muelleri leaves exposed to water-column O2 levels of ~231 869 
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µmol O2 L
-1 (control) and ~8 µmol O2 L

-1 (low O2). Values are given as a mean ±SEM (n=3); with their corresponding P values (Permutation 870 

ttest), where * indicate significant difference between treatments on a 5% level.    871 

  
α  Pmax (nmol O2 cm-2 h-1)  R (nmol O2 cm-2 h-1)  Ek (µmol photons m-2 s-1)  Ec

 (µmol photons m-2 s-1)  

Control O2  10.95±0.4  668.14±80.3  -117.09±12.5  60.82±6.0  5.19±0.8  

Low O2  13.34±0.1  687.85±49.3  -21.42±3.9  51.66±4.2  0.71±0.1  

P  0.0064*  0.7974  0.0018*  0.2892  0.0012*  

39  872 

  873 



 

Figure Legends  874 

  875 

Fig. 1 Vertical O2 concentration micro-profiles measured at the surface of Zostera muelleri 876 

leaves. Filled circles and solid lines represent data from the control leaves (i.e. leaves exposed 877 

to a water-column O2 concentration of ~231 µmol O2 L
-1), while open circles and dashed 878 

lines represent data from leaves exposed to low O2 conditions (i.e. ~8 µmol O2 L
-1). Incident 879 

photon irradiances are indicated by the figure legend (i.e. 0, 25, 50, 100, 200, 500 and 700 880 

µmol photons m-2 s-1). Error bars are ± standard error of the mean (SEM). Y = 0 indicate the 881 

leaf tissue surface. n=3  882 

Fig. 2 Net photosynthesis of Zostera muelleri leaves at an incident photon irradiance of 0, 25, 883 

50, 100, 200, 500 and 700 µmol photons m-2 s-1. Data points were fitted with an exponential 884 

saturation function (Webb et al., 1974) with an added respiration term, R, to account for 885 

respiration (Spilling et al., 2010). Black squares and line represent data of leaves kept in ~231 886 

µmol O2 L
-1 (i.e. control plants), while open triangles and dashed line represent data of leaves 887 

kept in ~8 µmol O2 L
-1 (i.e. low O2 treatment).  Error bars are ±SEM; while statistically 888 

different values are indicated by * (Permutation t-test, P< 0.05). n=3 889 
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Fig. 3 Normalized relative quantity (NRQ) of Phosphoenolpyruvate carboxylase (PEPC-1 892 

isoform 1 and PEPC-2 isoform 2) and γ Carbonic anhydrase (γ-CA) in Zostera muelleri under 893 

control (solid bars) and low O2 conditions (open bars) relative to the two most stable 894 

reference genes: S4 and GADPH. Statistical differences in the mean are indicated with *  895 

(Permutation t-test, P< 0.05) and error bars are ±SEM. n=4  896 
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