985 research outputs found

    Pressure-temperature evolution of primordial solar system solids during impact-induced compaction

    Get PDF
    Prior to becoming chondritic meteorites, primordial solids were a poorly consolidated mix of mm-scale igneous inclusions (chondrules) and high-porosity sub-μm dust (matrix). We used high-resolution numerical simulations to track the effect of impact-induced compaction on these materials. Here we show that impact velocities as low as 1.5 km s−1 were capable of heating the matrix to >1,000 K, with pressure–temperature varying by >10 GPa and >1,000 K over ~100 μm. Chondrules were unaffected, acting as heat-sinks: matrix temperature excursions were brief. As impact-induced compaction was a primary and ubiquitous process, our new understanding of its effects requires that key aspects of the chondrite record be re-evaluated: palaeomagnetism, petrography and variability in shock level across meteorite groups. Our data suggest a lithification mechanism for meteorites, and provide a ‘speed limit’ constraint on major compressive impacts that is inconsistent with recent models of solar system orbital architecture that require an early, rapid phase of main-belt collisional evolution

    Ages for exoplanet host stars

    Full text link
    Age is an important characteristic of a planetary system, but also one that is difficult to determine. Assuming that the host star and the planets are formed at the same time, the challenge is to determine the stellar age. Asteroseismology provides precise age determination, but in many cases the required detailed pulsation observations are not available. Here we concentrate on other techniques, which may have broader applicability but also serious limitations. Further development of this area requires improvements in our understanding of the evolution of stars and their age-dependent characteristics, combined with observations that allow reliable calibration of the various techniques.Comment: To appear in "Handbook of Exoplanets", eds. Deeg, H.J. & Belmonte, J.A, Springer (2018

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Acute Respiratory Distress Syndrome Induced by a Swine 2009 H1N1 Variant in Mice

    Get PDF
    Background: Acute respiratory distress syndrome (ARDS) induced by pandemic 2009 H1N1 influenza virus has been widely reported and was considered the main cause of death in critically ill patients with 2009 H1N1 infection. However, no animal model has been developed for ARDS caused by infection with 2009 H1N1 virus. Here, we present a mouse model of ARDS induced by 2009 H1N1 virus. Methodology Principal Findings: Mice were inoculated with A/swine/Shandong/731/2009 (SD/09), which was a 2009 H1N1 influenza variant with a G222D mutation in the hemagglutinin. Clinical symptoms were recorded every day. Lung injury was assessed by lung water content and histopathological observation. Arterial blood gas, leukocyte count in the bronchial alveolar lavage fluid and blood, virus titers, and cytokine levels in the lung were measured at various times post-inoculation. Mice infected with SD/09 virus showed typical ARDS symptoms characterized by 60 % lethality on days 8–10 postinoculation, highly edematous lungs, inflammatory cellular infiltration, alveolar and interstitial edema, lung hemorrhage, progressive and severe hypoxemia, and elevated levels of proinflammatory cytokines and chemokines. Conclusions/Significance: These results suggested that we successfully established an ARDS mouse model induced by a virulent 2009 H1N1 variant without previous adaptation, which may be of benefit for evaluating the pathogenesis or therapy of human ARDS caused by 2009 H1N1 virus

    How young can children reliably and validly self-report their health-related quality of life?: An analysis of 8,591 children across age subgroups with the PedsQL™ 4.0 Generic Core Scales

    Get PDF
    BACKGROUND: The last decade has evidenced a dramatic increase in the development and utilization of pediatric health-related quality of life (HRQOL) measures in an effort to improve pediatric patient health and well-being and determine the value of healthcare services. The emerging paradigm shift toward patient-reported outcomes (PROs) in clinical trials has provided the opportunity to further emphasize the value and essential need for pediatric patient self-reported outcomes measurement. Data from the PedsQL™ Database(SM )were utilized to test the hypothesis that children as young as 5 years of age can reliably and validly report their HRQOL. METHODS: The sample analyzed represented child self-report age data on 8,591 children ages 5 to 16 years from the PedsQL™ 4.0 Generic Core Scales Database(SM). Participants were recruited from general pediatric clinics, subspecialty clinics, and hospitals in which children were being seen for well-child checks, mild acute illness, or chronic illness care (n = 2,603, 30.3%), and from a State Children's Health Insurance Program (SCHIP) in California (n = 5,988, 69.7%). RESULTS: Items on the PedsQL™ 4.0 Generic Core Scales had minimal missing responses for children as young as 5 years old, supporting feasibility. The majority of the child self-report scales across the age subgroups, including for children as young as 5 years, exceeded the minimum internal consistency reliability standard of 0.70 required for group comparisons, while the Total Scale Scores across the age subgroups approached or exceeded the reliability criterion of 0.90 recommended for analyzing individual patient scale scores. Construct validity was demonstrated utilizing the known groups approach. For each PedsQL™ scale and summary score, across age subgroups, including children as young as 5 years, healthy children demonstrated a statistically significant difference in HRQOL (better HRQOL) than children with a known chronic health condition, with most effect sizes in the medium to large effect size range. CONCLUSION: The results demonstrate that children as young as the 5 year old age subgroup can reliably and validly self-report their HRQOL when given the opportunity to do so with an age-appropriate instrument. These analyses are consistent with recent FDA guidelines which require instrument development and validation testing for children and adolescents within fairly narrow age groupings and which determine the lower age limit at which children can provide reliable and valid responses across age categories

    Fine mapping of a linkage peak with integration of lipid traits identifies novel coronary artery disease genes on chromosome 5

    Get PDF
    Coronary artery disease (CAD), and one of its intermediate risk factors, dyslipidemia, possess a demonstrable genetic component, although the genetic architecture is incompletely defined. We previously reported a linkage peak on chromosome 5q31-33 for early-onset CAD where the strength of evidence for linkage was increased in families with higher mean low density lipoprotein-cholesterol (LDL-C). Therefore, we sought to fine-map the peak using association mapping of LDL-C as an intermediate disease-related trait to further define the etiology of this linkage peak. The study populations consisted of 1908 individuals from the CATHGEN biorepository of patients undergoing cardiac catheterization; 254 families (N = 827 individuals) from the GENECARD familial study of early-onset CAD; and 162 aorta samples harvested from deceased donors. Linkage disequilibrium-tagged SNPs were selected with an average of one SNP per 20 kb for 126.6-160.2 MB (region of highest linkage) and less dense spacing (one SNP per 50 kb) for the flanking regions (117.7-126.6 and 160.2-167.5 MB) and genotyped on all samples using a custom Illumina array. Association analysis of each SNP with LDL-C was performed using multivariable linear regression (CATHGEN) and the quantitative trait transmission disequilibrium test (QTDT; GENECARD). SNPs associated with the intermediate quantitative trait, LDL-C, were then assessed for association with CAD (i.e., a qualitative phenotype) using linkage and association in the presence of linkage (APL; GENECARD) and logistic regression (CATHGEN and aortas)
    corecore