267 research outputs found

    Isolation, Characterization and Lipid-Binding Properties of the Recalcitrant FtsA Division Protein from Escherichia coli

    Get PDF
    We have obtained milligram amounts of highly pure Escherichia coli division protein FtsA from inclusion bodies with an optimized purification method that, by overcoming the reluctance of FtsA to be purified, surmounts a bottleneck for the analysis of the molecular basis of FtsA function. Purified FtsA is folded, mostly monomeric and interacts with lipids. The apparent affinity of FtsA binding to the inner membrane is ten-fold higher than to phospholipids, suggesting that inner membrane proteins could modulate FtsA-membrane interactions. Binding of FtsA to lipids and membranes is insensitive to ionic strength, indicating that a net contribution of hydrophobic interactions is involved in the association of FtsA to lipid/membrane structures

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV

    Visualizing Interactions along the Escherichia coli Twin-Arginine Translocation Pathway Using Protein Fragment Complementation

    Get PDF
    The twin-arginine translocation (Tat) pathway is well known for its ability to export fully folded substrate proteins out of the cytoplasm of Gram-negative and Gram-positive bacteria. Studies of this mechanism in Escherichia coli have identified numerous transient protein-protein interactions that guide export-competent proteins through the Tat pathway. To visualize these interactions, we have adapted bimolecular fluorescence complementation (BiFC) to detect protein-protein interactions along the Tat pathway of living cells. Fragments of the yellow fluorescent protein (YFP) were fused to soluble and transmembrane factors that participate in the translocation process including Tat substrates, Tat-specific proofreading chaperones and the integral membrane proteins TatABC that form the translocase. Fluorescence analysis of these YFP chimeras revealed a wide range of interactions such as the one between the Tat substrate dimethyl sulfoxide reductase (DmsA) and its dedicated proofreading chaperone DmsD. In addition, BiFC analysis illuminated homo- and hetero-oligomeric complexes of the TatA, TatB and TatC integral membrane proteins that were consistent with the current model of translocase assembly. In the case of TatBC assemblies, we provide the first evidence that these complexes are co-localized at the cell poles. Finally, we used this BiFC approach to capture interactions between the putative Tat receptor complex formed by TatBC and the DmsA substrate or its dedicated chaperone DmsD. Our results demonstrate that BiFC is a powerful approach for studying cytoplasmic and inner membrane interactions underlying bacterial secretory pathways

    Carotid Baroreflex Activation: Past, Present, and Future

    Get PDF
    Electrical activation of the carotid baroreceptor system is an attractive therapy for the treatment of resistant hypertension. In the past, several attempts were made to directly activate the baroreceptor system in humans, but the method had to be restricted to a few selected patients. Adverse effects, the need for better electrical devices and better surgical techniques, and the lack of knowledge about long-term effects has greatly hampered developments in this area for many years. Recently, a new and promising device was evaluated in a multicenter feasibility trial, which showed a clinically and statistically significant reduction in office systolic blood pressure (>20 mm Hg). This reduction could be sustained for at least 2 years with an acceptable safety profile. In the future, this new device may stimulate further application of electrical activation of the carotid baroreflex in treatment-resistant hypertension

    Genome­-wide association study of alcohol consumption and genetic overlap with other health-­related traits in UK Biobank (<i>N </i>=112,117)

    Get PDF
    Alcohol consumption has been linked to over 200 diseases and is responsible for over 5% of the global disease burden. Well-known genetic variants in alcohol metabolizing genes, for example, ALDH2 and ADH1B, are strongly associated with alcohol consumption but have limited impact in European populations where they are found at low frequency. We performed a genome-wide association study (GWAS) of self-reported alcohol consumption in 112 117 individuals in the UK Biobank (UKB) sample of white British individuals. We report significant genome-wide associations at 14 loci. These include single-nucleotide polymorphisms (SNPs) in alcohol metabolizing genes (ADH1B/ADH1C/ADH5) and two loci in KLB, a gene recently associated with alcohol consumption. We also identify SNPs at novel loci including GCKR, CADM2 and FAM69C. Gene-based analyses found significant associations with genes implicated in the neurobiology of substance use (DRD2, PDE4B). GCTA analyses found a significant SNP-based heritability of self-reported alcohol consumption of 13% (se=0.01). Sex-specific analyses found largely overlapping GWAS loci and the genetic correlation (rG) between male and female alcohol consumption was 0.90 (s.e.=0.09, P-value=7.16 × 10(-23)). Using LD score regression, genetic overlap was found between alcohol consumption and years of schooling (rG=0.18, s.e.=0.03), high-density lipoprotein cholesterol (rG=0.28, s.e.=0.05), smoking (rG=0.40, s.e.=0.06) and various anthropometric traits (for example, overweight, rG=-0.19, s.e.=0.05). This study replicates the association between alcohol consumption and alcohol metabolizing genes and KLB, and identifies novel gene associations that should be the focus of future studies investigating the neurobiology of alcohol consumption

    Bioaccumulation and ecotoxicity of carbon nanotubes

    Get PDF
    Carbon nanotubes (CNT) have numerous industrial applications and may be released to the environment. In the aquatic environment, pristine or functionalized CNT have different dispersion behavior, potentially leading to different risks of exposure along the water column. Data included in this review indicate that CNT do not cross biological barriers readily. When internalized, only a minimal fraction of CNT translocate into organism body compartments. The reported CNT toxicity depends on exposure conditions, model organism, CNT-type, dispersion state and concentration. In the ecotoxicological tests, the aquatic organisms were generally found to be more sensitive than terrestrial organisms. Invertebrates were more sensitive than vertebrates. Single-walled CNT were found to be more toxic than double-/multi-walled CNT. Generally, the effect concentrations documented in literature were above current modeled average environmental concentrations. Measurement data are needed for estimation of environmental no-effect concentrations. Future studies with benchmark materials are needed to generate comparable results. Studies have to include better characterization of the starting materials, of the dispersions and of the biological fate, to obtain better knowledge of the exposure/effect relationships
    corecore