42 research outputs found

    Towards the development of an EIT-based stretchable sensor for multi-touch industrial human-computer interaction systems

    Get PDF
    In human-computer interaction studies, an interaction is often considered as a kind of information or discrete internal states of an individual that can be transmitted in a loss-free manner from people to computing interfaces (or robotic interfaces) and vice-versa. This project aims to investigate processes capable of communicating and cooperating by adjusting their schedules to match the evolving execution circumstances, in a way that maximise the quality of their joint activities. By enabling human-computer interactions, the process will emerge as a framework based on the concept of expectancy, demand, and need of the human and computer together, for understanding the interplay between people and computers. The idea of this work is to utilise touch feedback from humans as a channel for communication thanks to an artificial sensitive skin made of a thin, flexible, and stretchable material acting as transducer. As a proof of concept, we demonstrate that the first prototype of our artificial sensitive skin can detect surface contacts and show their locations with an image reconstructing the internal electrical conductivity of the sensor

    Cyclodextrin/cellulose hydrogel with gallic acid to prevent wound infection

    Get PDF
    Cyclodextrin-based hydrogels have been described as suitable for the controlled-release of bioactive molecules to be used as wound dressing. These materials have major advantages, since they gather the hydrogel properties (high degree of swelling and easy manipulation) and the encapsulation ability of cyclodextrins. β-cyclodextrin (β) or hydroxypropyl-β-cyclodextrin (HPβ) was cross-linked (1,4-butanediol diglycidyl ether) with hydroxypropyl methylcellulose under mild conditions. The hydrogels were chemically characterized by swelling degree, FTIR, DSC and contact angle. The gallic acid loading and release was also analysed, as well the antibacterial activity and cytotoxicity of the polymeric networks. The hydrogels obtained were firm and transparent, with good swelling ability. The gel-HPβ had a surface more hydrophilic when compared with the gel-β. Nevertheless, both hydrogels were capable to incorporate gallic acid and sustain the release for 48 h. The antibacterial activity of gallic acid was maintained after its adsorption within the polymeric matrix, as well as, gallic acid effect on fibroblast proliferation. Therefore, gel-β and gel-HPβ conjugated with gallic acid were shown to be a viable option for antibacterial wound dressing.The authors thank the FCT Strategic Projects PEst-OE/EQB/LA0023/2013, PEst-C/CTM/UI0264/2011, the Project "BioHealth-Biotechnology and Bioengineering approaches to improve health quality'', Ref. NORTE-07-0124-FEDER-000027, co-funded by the Programa Operacional Regional doNorte (ON.2-ONovoNorte), QREN, FEDER, and E. Pinho grant (SFRH/BD/62665/2009)

    Design of bio-nanosystems for oral delivery of functional compounds

    Get PDF
    Nanotechnology has been referred to as one of the most interesting topics in food technology due to the potentialities of its use by food industry. This calls for studying the behavior of nanosystems as carriers of biological and functional compounds aiming at their utilization for delivery, controlled release and protection of such compounds during food processing and oral ingestion. This review highlights the principles of design and production of bio-nanosystems for oral delivery and their behavior within the human gastrointestinal (GI) tract, while providing an insight into the application of reverse engineering approach to the design of those bio-nanosystems. Nanocapsules, nanohydrogels, lipid-based and multilayer nanosystems are discussed (in terms of their main ingredients, production techniques, predominant forces and properties) and some examples of possible food applications are given. Phenomena occurring in in vitro digestion models are presented, mainly using examples related to the utilization of lipid-based nanosystems and their physicochemical behavior throughout the GI tract. Furthermore, it is shown how a reverse engineering approach, through two main steps, can be used to design bio-nanosystems for food applications, and finally a last section is presented to discuss future trends and consumer perception on food nanotechnology.Miguel A. Cerqueira, Ana C. Pinheiro, Helder D. Silva, Philippe E. Ramos, Ana I. Bourbon, Oscar L. Ramos (SFRH/BPD/72753/2010, SFRH/BD/48120/2008, SFRH/BD/81288/2011, SFRH/BD/80800/2011, SFRH/BD/73178/2010 and SFRH/BPD/80766/2011, respectively) are the recipients of a fellowship from the Fundacao para a Ciencia e Tecnologia (FCT, POPH-QREN and FSE Portugal). Maria L. Flores-Lopez thanks Mexican Science and Technology Council (CONACYT, Mexico) for PhD fellowship support (CONACYT Grant number: 215499/310847). The support of EU Cost Actions FA0904 and FA1001 is gratefully acknowledged

    The Production and Application of Hydrogels for Wound Management: A Review

    Get PDF
    Wound treatment has increased in importance in the wound care sector due to the pervasiveness of chronic wounds in the high-risk population including, but not limited to, geriatric population, immunocompromised and obese patients. Furthermore, the number of people diagnosed with diabetes is rapidly growing. According to the World Health Organization (WHO), the global diabetic occurrence has increased from 4.7 in 1980 to 8.5 in 2014. As diabetes becomes a common medical condition, it has also become one of the major causes of chronic wounds which require specialised care to address patients’ unique needs. Wound dressings play a vital role in the wound healing process as they protect the wound site from the external environment. They are also capable of interacting with the wound bed in order to facilitate and accelerate the healing process. Advanced dressings such as hydrogels are designed to maintain a moist environment at the site of application and due to high water content are ideal candidates for wound management. Hydrogels can be used for both exudating or dry necrotic wounds. Additionally, hydrogels also demonstrate other unique features such as softness, malleability and biocompatibility. Nowadays, advanced wound care products make up around 7.1 billion of the global market and their production is growing at an annual rate of 8.3 with the market projected to be worth 12.5 billion by 2022. The presented review focuses on novel hydrogel wound dressings, their main characteristics and their wound management applications. It also describes recent methodologies used for their production and the future potential developments

    Global age-sex-specific fertility, mortality, healthy life expectancy (HALE), and population estimates in 204 countries and territories, 1950-2019 : a comprehensive demographic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: Accurate and up-to-date assessment of demographic metrics is crucial for understanding a wide range of social, economic, and public health issues that affect populations worldwide. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 produced updated and comprehensive demographic assessments of the key indicators of fertility, mortality, migration, and population for 204 countries and territories and selected subnational locations from 1950 to 2019. Methods: 8078 country-years of vital registration and sample registration data, 938 surveys, 349 censuses, and 238 other sources were identified and used to estimate age-specific fertility. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate age-specific fertility rates for 5-year age groups between ages 15 and 49 years. With extensions to age groups 10–14 and 50–54 years, the total fertility rate (TFR) was then aggregated using the estimated age-specific fertility between ages 10 and 54 years. 7417 sources were used for under-5 mortality estimation and 7355 for adult mortality. ST-GPR was used to synthesise data sources after correction for known biases. Adult mortality was measured as the probability of death between ages 15 and 60 years based on vital registration, sample registration, and sibling histories, and was also estimated using ST-GPR. HIV-free life tables were then estimated using estimates of under-5 and adult mortality rates using a relational model life table system created for GBD, which closely tracks observed age-specific mortality rates from complete vital registration when available. Independent estimates of HIV-specific mortality generated by an epidemiological analysis of HIV prevalence surveys and antenatal clinic serosurveillance and other sources were incorporated into the estimates in countries with large epidemics. Annual and single-year age estimates of net migration and population for each country and territory were generated using a Bayesian hierarchical cohort component model that analysed estimated age-specific fertility and mortality rates along with 1250 censuses and 747 population registry years. We classified location-years into seven categories on the basis of the natural rate of increase in population (calculated by subtracting the crude death rate from the crude birth rate) and the net migration rate. We computed healthy life expectancy (HALE) using years lived with disability (YLDs) per capita, life tables, and standard demographic methods. Uncertainty was propagated throughout the demographic estimation process, including fertility, mortality, and population, with 1000 draw-level estimates produced for each metric. Findings: The global TFR decreased from 2·72 (95% uncertainty interval [UI] 2·66–2·79) in 2000 to 2·31 (2·17–2·46) in 2019. Global annual livebirths increased from 134·5 million (131·5–137·8) in 2000 to a peak of 139·6 million (133·0–146·9) in 2016. Global livebirths then declined to 135·3 million (127·2–144·1) in 2019. Of the 204 countries and territories included in this study, in 2019, 102 had a TFR lower than 2·1, which is considered a good approximation of replacement-level fertility. All countries in sub-Saharan Africa had TFRs above replacement level in 2019 and accounted for 27·1% (95% UI 26·4–27·8) of global livebirths. Global life expectancy at birth increased from 67·2 years (95% UI 66·8–67·6) in 2000 to 73·5 years (72·8–74·3) in 2019. The total number of deaths increased from 50·7 million (49·5–51·9) in 2000 to 56·5 million (53·7–59·2) in 2019. Under-5 deaths declined from 9·6 million (9·1–10·3) in 2000 to 5·0 million (4·3–6·0) in 2019. Global population increased by 25·7%, from 6·2 billion (6·0–6·3) in 2000 to 7·7 billion (7·5–8·0) in 2019. In 2019, 34 countries had negative natural rates of increase; in 17 of these, the population declined because immigration was not sufficient to counteract the negative rate of decline. Globally, HALE increased from 58·6 years (56·1–60·8) in 2000 to 63·5 years (60·8–66·1) in 2019. HALE increased in 202 of 204 countries and territories between 2000 and 2019

    Global burden of 369 diseases and injuries in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019

    Get PDF
    Background: In an era of shifting global agendas and expanded emphasis on non-communicable diseases and injuries along with communicable diseases, sound evidence on trends by cause at the national level is essential. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) provides a systematic scientific assessment of published, publicly available, and contributed data on incidence, prevalence, and mortality for a mutually exclusive and collectively exhaustive list of diseases and injuries. Methods: GBD estimates incidence, prevalence, mortality, years of life lost (YLLs), years lived with disability (YLDs), and disability-adjusted life-years (DALYs) due to 369 diseases and injuries, for two sexes, and for 204 countries and territories. Input data were extracted from censuses, household surveys, civil registration and vital statistics, disease registries, health service use, air pollution monitors, satellite imaging, disease notifications, and other sources. Cause-specific death rates and cause fractions were calculated using the Cause of Death Ensemble model and spatiotemporal Gaussian process regression. Cause-specific deaths were adjusted to match the total all-cause deaths calculated as part of the GBD population, fertility, and mortality estimates. Deaths were multiplied by standard life expectancy at each age to calculate YLLs. A Bayesian meta-regression modelling tool, DisMod-MR 2.1, was used to ensure consistency between incidence, prevalence, remission, excess mortality, and cause-specific mortality for most causes. Prevalence estimates were multiplied by disability weights for mutually exclusive sequelae of diseases and injuries to calculate YLDs. We considered results in the context of the Socio-demographic Index (SDI), a composite indicator of income per capita, years of schooling, and fertility rate in females younger than 25 years. Uncertainty intervals (UIs) were generated for every metric using the 25th and 975th ordered 1000 draw values of the posterior distribution. Findings: Global health has steadily improved over the past 30 years as measured by age-standardised DALY rates. After taking into account population growth and ageing, the absolute number of DALYs has remained stable. Since 2010, the pace of decline in global age-standardised DALY rates has accelerated in age groups younger than 50 years compared with the 1990–2010 time period, with the greatest annualised rate of decline occurring in the 0–9-year age group. Six infectious diseases were among the top ten causes of DALYs in children younger than 10 years in 2019: lower respiratory infections (ranked second), diarrhoeal diseases (third), malaria (fifth), meningitis (sixth), whooping cough (ninth), and sexually transmitted infections (which, in this age group, is fully accounted for by congenital syphilis; ranked tenth). In adolescents aged 10–24 years, three injury causes were among the top causes of DALYs: road injuries (ranked first), self-harm (third), and interpersonal violence (fifth). Five of the causes that were in the top ten for ages 10–24 years were also in the top ten in the 25–49-year age group: road injuries (ranked first), HIV/AIDS (second), low back pain (fourth), headache disorders (fifth), and depressive disorders (sixth). In 2019, ischaemic heart disease and stroke were the top-ranked causes of DALYs in both the 50–74-year and 75-years-and-older age groups. Since 1990, there has been a marked shift towards a greater proportion of burden due to YLDs from non-communicable diseases and injuries. In 2019, there were 11 countries where non-communicable disease and injury YLDs constituted more than half of all disease burden. Decreases in age-standardised DALY rates have accelerated over the past decade in countries at the lower end of the SDI range, while improvements have started to stagnate or even reverse in countries with higher SDI. Interpretation: As disability becomes an increasingly large component of disease burden and a larger component of health expenditure, greater research and developm nt investment is needed to identify new, more effective intervention strategies. With a rapidly ageing global population, the demands on health services to deal with disabling outcomes, which increase with age, will require policy makers to anticipate these changes. The mix of universal and more geographically specific influences on health reinforces the need for regular reporting on population health in detail and by underlying cause to help decision makers to identify success stories of disease control to emulate, as well as opportunities to improve. Funding: Bill & Melinda Gates Foundation. © 2020 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licens

    Global, regional, and national sex differences in the global burden of tuberculosis by HIV status, 1990–2019: results from the Global Burden of Disease Study 2019

    Get PDF
    Background Tuberculosis is a major contributor to the global burden of disease, causing more than a million deaths annually. Given an emphasis on equity in access to diagnosis and treatment of tuberculosis in global health targets, evaluations of differences in tuberculosis burden by sex are crucial. We aimed to assess the levels and trends of the global burden of tuberculosis, with an emphasis on investigating differences in sex by HIV status for 204 countries and territories from 1990 to 2019. Methods We used a Bayesian hierarchical Cause of Death Ensemble model (CODEm) platform to analyse 21 505 site-years of vital registration data, 705 site-years of verbal autopsy data, 825 site-years of sample-based vital registration data, and 680 site-years of mortality surveillance data to estimate mortality due to tuberculosis among HIV-negative individuals. We used a population attributable fraction approach to estimate mortality related to HIV and tuberculosis coinfection. A compartmental meta-regression tool (DisMod-MR 2.1) was then used to synthesise all available data sources, including prevalence surveys, annual case notifications, population-based tuberculin surveys, and tuberculosis cause-specific mortality, to produce estimates of incidence, prevalence, and mortality that were internally consistent. We further estimated the fraction of tuberculosis mortality that is attributable to independent effects of risk factors, including smoking, alcohol use, and diabetes, for HIV-negative individuals. For individuals with HIV and tuberculosis coinfection, we assessed mortality attributable to HIV risk factors including unsafe sex, intimate partner violence (only estimated among females), and injection drug use. We present 95% uncertainty intervals for all estimates. Findings Globally, in 2019, among HIV-negative individuals, there were 1.18 million (95% uncertainty interval 1.08-1.29) deaths due to tuberculosis and 8.50 million (7.45-9.73) incident cases of tuberculosis. Among HIV-positive individuals, there were 217 000 (153 000-279 000) deaths due to tuberculosis and 1.15 million (1.01-1.32) incident cases in 2019. More deaths and incident cases occurred in males than in females among HIV-negative individuals globally in 2019, with 342 000 (234 000-425 000) more deaths and 1.01 million (0.82-1.23) more incident cases in males than in females. Among HIV-positive individuals, 6250 (1820-11 400) more deaths and 81 100 (63 300-100 000) more incident cases occurred among females than among males in 2019. Age-standardised mortality rates among HIV-negative males were more than two times greater in 105 countries and age-standardised incidence rates were more than 1.5 times greater in 74 countries than among HIV-negative females in 2019. The fraction of global tuberculosis deaths among HIV-negative individuals attributable to alcohol use, smoking, and diabetes was 4.27 (3.69-5.02), 6.17 (5.48-7.02), and 1.17 (1.07-1.28) times higher, respectively, among males than among females in 2019. Among individuals with HIV and tuberculosis coinfection, the fraction of mortality attributable to injection drug use was 2.23 (2.03-2.44) times greater among males than females, whereas the fraction due to unsafe sex was 1.06 (1.05-1.08) times greater among females than males. Interpretation As countries refine national tuberculosis programmes and strategies to end the tuberculosis epidemic, the excess burden experienced by males is important. Interventions are needed to actively communicate, especially to men, the importance of early diagnosis and treatment. These interventions should occur in parallel with efforts to minimise excess HIV burden among women in the highest HIV burden countries that are contributing to excess HIV and tuberculosis coinfection burden for females. Placing a focus on tuberculosis burden among HIV-negative males and HIV and tuberculosis coinfection among females might help to diminish the overall burden of tuberculosis. This strategy will be crucial in reaching both equity and burden targets outlined by global health milestone

    Tracking development assistance for health and for COVID-19: a review of development assistance, government, out-of-pocket, and other private spending on health for 204 countries and territories, 1990-2050

    Get PDF
    Background The rapid spread of COVID-19 renewed the focus on how health systems across the globe are financed, especially during public health emergencies. Development assistance is an important source of health financing in many low-income countries, yet little is known about how much of this funding was disbursed for COVID-19. We aimed to put development assistance for health for COVID-19 in the context of broader trends in global health financing, and to estimate total health spending from 1995 to 2050 and development assistance for COVID-19 in 2020. Methods We estimated domestic health spending and development assistance for health to generate total health-sector spending estimates for 204 countries and territories. We leveraged data from the WHO Global Health Expenditure Database to produce estimates of domestic health spending. To generate estimates for development assistance for health, we relied on project-level disbursement data from the major international development agencies' online databases and annual financial statements and reports for information on income sources. To adjust our estimates for 2020 to include disbursements related to COVID-19, we extracted project data on commitments and disbursements from a broader set of databases (because not all of the data sources used to estimate the historical series extend to 2020), including the UN Office of Humanitarian Assistance Financial Tracking Service and the International Aid Transparency Initiative. We reported all the historic and future spending estimates in inflation-adjusted 2020 US,2020US, 2020 US per capita, purchasing-power parity-adjusted USpercapita,andasaproportionofgrossdomesticproduct.Weusedvariousmodelstogeneratefuturehealthspendingto2050.FindingsIn2019,healthspendinggloballyreached per capita, and as a proportion of gross domestic product. We used various models to generate future health spending to 2050. Findings In 2019, health spending globally reached 8. 8 trillion (95% uncertainty interval UI] 8.7-8.8) or 1132(11191143)perperson.Spendingonhealthvariedwithinandacrossincomegroupsandgeographicalregions.Ofthistotal,1132 (1119-1143) per person. Spending on health varied within and across income groups and geographical regions. Of this total, 40.4 billion (0.5%, 95% UI 0.5-0.5) was development assistance for health provided to low-income and middle-income countries, which made up 24.6% (UI 24.0-25.1) of total spending in low-income countries. We estimate that 54.8billionindevelopmentassistanceforhealthwasdisbursedin2020.Ofthis,54.8 billion in development assistance for health was disbursed in 2020. Of this, 13.7 billion was targeted toward the COVID-19 health response. 12.3billionwasnewlycommittedand12.3 billion was newly committed and 1.4 billion was repurposed from existing health projects. 3.1billion(22.43.1 billion (22.4%) of the funds focused on country-level coordination and 2.4 billion (17.9%) was for supply chain and logistics. Only 714.4million(7.7714.4 million (7.7%) of COVID-19 development assistance for health went to Latin America, despite this region reporting 34.3% of total recorded COVID-19 deaths in low-income or middle-income countries in 2020. Spending on health is expected to rise to 1519 (1448-1591) per person in 2050, although spending across countries is expected to remain varied. Interpretation Global health spending is expected to continue to grow, but remain unequally distributed between countries. We estimate that development organisations substantially increased the amount of development assistance for health provided in 2020. Continued efforts are needed to raise sufficient resources to mitigate the pandemic for the most vulnerable, and to help curtail the pandemic for all. Copyright (C) 2021 The Author(s). Published by Elsevier Ltd

    Unmanned autonomous vehicle control and SLAM problem in 2-D environment

    Full text link
    © 2004 IEEE. This paper proposes a method of selecting (autonomously) the artificial landmarks by Laser measurement, to establish the 2D obstacle map. Due to the error in the motion and measurement of the robot, the observed landmarks positions include the uncertainty. In this paper, we discuss the simultaneous laser type localization and map building (SLAM) problems. SLAM problem asks, is it possible for an autonomous vehicle to start in an unknown location in an unknown environment and then incrementally builds a map of this environment, while simultaneously using the map to compute the absolute vehicle location. From the results, we proved that a solution to the SLAM problem is indeed possible for 2D obstacle map. This implementation was made on Real time Player/Stage Robotics Software as well as the Matlab results were obtained, also we demonstrate how key issues such as, map management and data association can be handled in a practical environment
    corecore