45 research outputs found

    Filaggriinin nollamutaatioiden hyödyllisyys atopian hoitovasteen ennusteelle: Havaintotutkimus suomalaisissa potilaissa

    Get PDF
    The contribution of filaggrin null mutations to predicting atopic dermatitis (AD) treatment response is not clear, nor have such mutations been studied in the Finnish population. This study tested the association of the 4 most prevalent European FLG null mutations, the 2 Finnish enriched FLG null mutations, the FLG 12-repeat allele, and 50 additional epidermal barrier gene variants, with risk of AD, disease severity, clinical features, risk of other atopic diseases, age of onset, and treatment response in 501 patients with AD and 1710 controls. AD, early-onset AD, palmar hyperlinearity, and asthma showed significant associations with the combined FLG null genotype. Disease severity and treatment response were independent of patient FLG status. Carrier frequencies of R501X, 2282del4, and S3247X were notably lower in Finns compared with reported frequencies in other populations. This data confirms FLG mutations as risk factors for AD in Finns, but also, questions their feasibility as biomarkers in predicting treatment response.The contribution of filaggrin null mutations to predicting atopic dermatitis (AD) treatment response is not clear, nor have such mutations been studied in the Finnish population. This study tested the association of the 4 most prevalent European FLG null mutations, the 2 Finnish enriched FLG null mutations, the FLG 12-repeat allele, and 50 additional epidermal barrier gene variants, with risk of AD, disease severity, clinical features, risk of other atopic diseases, age of onset, and treatment response in 501 patients with AD and 1,710 controls. AD, early-onset AD, palmar hyperlinearity, and asthma showed significant associations with the combined FLG null genotype. Disease severity and treatment response were independent of patient FLG status. Carrier frequencies of R501X, 2282del4, and S3247X were notably lower in Finns compared with reported frequencies in other populations. This data confirms FLG mutations as risk factors for AD in Finns, but also questions their feasibility as biomarkers in predicting treatment response.Peer reviewe

    Common Variant Burden Contributes to the Familial Aggregation of Migraine in 1,589 Families

    Get PDF
    Complex traits, including migraine, often aggregate in families, but the underlying genetic architecture behind this is not well understood. The aggregation could be explained by rare, penetrant variants that segregate according to Mendelian inheritance or by the sufficient polygenic accumulation of common variants, each with an individually small effect, or a combination of the two hypotheses. In 8,319 individuals across 1,589 migraine families, we calculated migraine polygenic risk scores (PRS) and found a significantly higher common variant burden in familial cases (n = 5,317, OR = 1.76, 95% CI = 1.71-1.81, p = 1.7 × 10-109) compared to population cases from the FINRISK cohort (n = 1,101, OR = 1.32, 95% CI = 1.25-1.38, p = 7.2 × 10-17). The PRS explained 1.6% of the phenotypic variance in the population cases and 3.5% in the familial cases (including 2.9% for migraine without aura, 5.5% for migraine with typical aura, and 8.2% for hemiplegic migraine). The results demonstrate a significant contribution of common polygenic variation to the familial aggregation of migraine

    Hundreds of variants clustered in genomic loci and biological pathways affect human height

    Get PDF
    Most common human traits and diseases have a polygenic pattern of inheritance: DNA sequence variants at many genetic loci influence the phenotype. Genome-wide association (GWA) studies have identified more than 600 variants associated with human traits, but these typically explain small fractions of phenotypic variation, raising questions about the use of further studies. Here, using 183,727 individuals, we show that hundreds of genetic variants, in at least 180 loci, influence adult height, a highly heritable and classic polygenic trait. The large number of loci reveals patterns with important implications for genetic studies of common human diseases and traits. First, the 180 loci are not random, but instead are enriched for genes that are connected in biological pathways (P = 0.016) and that underlie skeletal growth defects (P < 0.001). Second, the likely causal gene is often located near the most strongly associated variant: in 13 of 21 loci containing a known skeletal growth gene, that gene was closest to the associated variant. Third, at least 19 loci have multiple independently associated variants, suggesting that allelic heterogeneity is a frequent feature of polygenic traits, that comprehensive explorations of already-discovered loci should discover additional variants and that an appreciable fraction of associated loci may have been identified. Fourth, associated variants are enriched for likely functional effects on genes, being over-represented among variants that alter amino-acid structure of proteins and expression levels of nearby genes. Our data explain approximately 10% of the phenotypic variation in height, and we estimate that unidentified common variants of similar effect sizes would increase this figure to approximately 16% of phenotypic variation (approximately 20% of heritable variation). Although additional approaches are needed to dissect the genetic architecture of polygenic human traits fully, our findings indicate that GWA studies can identify large numbers of loci that implicate biologically relevant genes and pathways.

    A Comprehensive Evaluation of Potential Lung Function Associated Genes in the SpiroMeta General Population Sample

    Get PDF
    RATIONALE: Lung function measures are heritable traits that predict population morbidity and mortality and are essential for the diagnosis of chronic obstructive pulmonary disease (COPD). Variations in many genes have been reported to affect these traits, but attempts at replication have provided conflicting results. Recently, we undertook a meta-analysis of Genome Wide Association Study (GWAS) results for lung function measures in 20,288 individuals from the general population (the SpiroMeta consortium). OBJECTIVES: To comprehensively analyse previously reported genetic associations with lung function measures, and to investigate whether single nucleotide polymorphisms (SNPs) in these genomic regions are associated with lung function in a large population sample. METHODS: We analysed association for SNPs tagging 130 genes and 48 intergenic regions (+/-10 kb), after conducting a systematic review of the literature in the PubMed database for genetic association studies reporting lung function associations. RESULTS: The analysis included 16,936 genotyped and imputed SNPs. No loci showed overall significant association for FEV(1) or FEV(1)/FVC traits using a carefully defined significance threshold of 1.3×10(-5). The most significant loci associated with FEV(1) include SNPs tagging MACROD2 (P = 6.81×10(-5)), CNTN5 (P = 4.37×10(-4)), and TRPV4 (P = 1.58×10(-3)). Among ever-smokers, SERPINA1 showed the most significant association with FEV(1) (P = 8.41×10(-5)), followed by PDE4D (P = 1.22×10(-4)). The strongest association with FEV(1)/FVC ratio was observed with ABCC1 (P = 4.38×10(-4)), and ESR1 (P = 5.42×10(-4)) among ever-smokers. CONCLUSIONS: Polymorphisms spanning previously associated lung function genes did not show strong evidence for association with lung function measures in the SpiroMeta consortium population. Common SERPINA1 polymorphisms may affect FEV(1) among smokers in the general population.Peer reviewe

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    Genome-wide association identifies nine common variants associated with fasting proinsulin levels and provides new insights into the pathophysiology of type 2 diabetes.

    Get PDF
    OBJECTIVE: Proinsulin is a precursor of mature insulin and C-peptide. Higher circulating proinsulin levels are associated with impaired β-cell function, raised glucose levels, insulin resistance, and type 2 diabetes (T2D). Studies of the insulin processing pathway could provide new insights about T2D pathophysiology. RESEARCH DESIGN AND METHODS: We have conducted a meta-analysis of genome-wide association tests of ∼2.5 million genotyped or imputed single nucleotide polymorphisms (SNPs) and fasting proinsulin levels in 10,701 nondiabetic adults of European ancestry, with follow-up of 23 loci in up to 16,378 individuals, using additive genetic models adjusted for age, sex, fasting insulin, and study-specific covariates. RESULTS: Nine SNPs at eight loci were associated with proinsulin levels (P < 5 × 10(-8)). Two loci (LARP6 and SGSM2) have not been previously related to metabolic traits, one (MADD) has been associated with fasting glucose, one (PCSK1) has been implicated in obesity, and four (TCF7L2, SLC30A8, VPS13C/C2CD4A/B, and ARAP1, formerly CENTD2) increase T2D risk. The proinsulin-raising allele of ARAP1 was associated with a lower fasting glucose (P = 1.7 × 10(-4)), improved β-cell function (P = 1.1 × 10(-5)), and lower risk of T2D (odds ratio 0.88; P = 7.8 × 10(-6)). Notably, PCSK1 encodes the protein prohormone convertase 1/3, the first enzyme in the insulin processing pathway. A genotype score composed of the nine proinsulin-raising alleles was not associated with coronary disease in two large case-control datasets. CONCLUSIONS: We have identified nine genetic variants associated with fasting proinsulin. Our findings illuminate the biology underlying glucose homeostasis and T2D development in humans and argue against a direct role of proinsulin in coronary artery disease pathogenesis

    Sixteen new lung function signals identified through 1000 Genomes Project reference panel imputation

    Get PDF
    Lung function measures are used in the diagnosis of chronic obstructive pulmonary disease. In 38,199 European ancestry individuals, we studied genome-wide association of forced expiratory volume in 1 s (FEV1), forced vital capacity (FVC) and FEV1/FVC with 1000 Genomes Project (phase 1)-imputed genotypes and followed up top associations in 54,550 Europeans. We identify 14 novel loci (P <5 x 10(-8)) in or near ENSA, RNU5F-1, KCNS3, AK097794, ASTN2, LHX3, CCDC91, TBX3, TRIP11, RIN3, TEKT5, LTBP4, MN1 and AP1S2, and two novel signals at known loci NPNT and GPR126, providing a basis for new understanding of the genetic determinants of these traits and pulmonary diseases in which they are altered.Peer reviewe

    Sex-stratified Genome-wide Association Studies Including 270,000 Individuals Show Sexual Dimorphism in Genetic Loci for Anthropometric Traits

    Get PDF
    Peer reviewe
    corecore