11 research outputs found

    Search for dark matter at √s=13 TeV in final states containing an energetic photon and large missing transverse momentum with the ATLAS detector

    Get PDF
    Results of a search for physics beyond the Standard Model in events containing an energetic photon and large missing transverse momentum with the ATLAS detector at the Large Hadron Collider are reported. As the number of events observed in data, corresponding to an integrated luminosity of 36.1 fb−1 of proton–proton collisions at a centre-of-mass energy of 13 TeV, is in agreement with the Standard Model expectations, model-independent limits are set on the fiducial cross section for the production of events in this final state. Exclusion limits are also placed in models where dark-matter candidates are pair-produced. For dark-matter production via an axial-vector or a vector mediator in the s-channel, this search excludes mediator masses below 750–1200 GeV for dark-matter candidate masses below 230–480 GeV at 95% confidence level, depending on the couplings. In an effective theory of dark-matter production, the limits restrict the value of the suppression scale M∗ to be above 790 GeV at 95% confidence level. A limit is also reported on the production of a high-mass scalar resonance by processes beyond the Standard Model, in which the resonance decays to Zγ and the Z boson subsequently decays into neutrinos

    Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Get PDF
    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β* are studied

    Beam-induced and cosmic-ray backgrounds observed in the ATLAS detector during the LHC 2012 proton-proton running period

    Get PDF
    This paper discusses various observations on beam-induced and cosmic-ray backgrounds in the ATLAS detector during the LHC 2012 proton-proton run. Building on published results based on 2011 data, the correlations between background and residual pressure of the beam vacuum are revisited. Ghost charge evolution over 2012 and its role for backgrounds are evaluated. New methods to monitor ghost charge with beam-gas rates are presented and observations of LHC abort gap population by ghost charge are discussed in detail. Fake jets from colliding bunches and from ghost charge are analysed with improved methods, showing that ghost charge in individual radio-frequency buckets of the LHC can be resolved. Some results of two short periods of dedicated cosmic-ray background data-taking are shown; in particular cosmic-ray muon induced fake jet rates are compared to Monte Carlo simulations and to the fake jet rates from beam background. A thorough analysis of a particular LHC fill, where abnormally high background was observed, is presented. Correlations between backgrounds and beam intensity losses in special fills with very high β∗ are studied

    Search for WH production with a light Higgs boson decaying to prompt electron-jets in proton-proton collisions at s\sqrt{s}=7 TeV with the ATLAS detector

    Get PDF
    A search is performed for WH production with a light Higgs boson decaying to hidden-sector particles resulting in clusters of collimated electrons, known as electron-jets. The search is performed with 2.04 fb-1 of data collected in 2011 with the ATLAS detector at the LHC in proton-proton collisions at s\sqrt{s}=7 TeV. One event satisfying the signal selection criteria is observed, which is consistent with the expected background rate. Limits on the product of the WH production cross section and the branching ratio of a Higgs boson decaying to prompt electron-jets are calculated as a function of a Higgs boson mass in the range from 100 GeV to 140 GeV.Peer Reviewe

    Search for diphoton events with large missing transverse momentum in 1 fb(-1) of 7 TeV proton-proton collision data with the ATLAS detector ATLAS Collaboration

    No full text
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb -1 of proton-proton collision data at s=7 TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: Λ<(22-129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, σ<(27-91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and σ<(15-27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale Λ and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date. © 2012 CERN

    Measurement of W(+/-)Z production in proton-proton collisions at root s=7 TeV with the ATLAS detector

    No full text

    Search for diphoton events with large missing transverse momentum in 1 fb<sup>-1</sup> of 7 TeV proton–proton collision data with the ATLAS detector

    Get PDF
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb−1of proton–proton collision data at &#8730;s=7  TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: &#963;&#60;(22–129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, &#963;&#60;(27–91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and &#963;&#60; (15–27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale &#8743; and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date

    Search for diphoton events with large missing transverse momentum in 1 fb(-1) of 7 TeV proton-proton collision data with the ATLAS detector ATLAS Collaboration

    No full text
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb(-1) of proton-proton collision data at root s = 7 TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: sigma < (22-129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, sigma < (27-91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and sigma < (15-27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale Lambda and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved. RI Sivoklokov, Sergey/D-8150-2012; Li, Xuefei/C-3861-2012; Smirnov, Sergei/F-1014-2011; Gladilin, Leonid/B-5226-2011; Barreiro, Fernando/D-9808-2012; Prokoshin, Fedor/E-2795-2012; Fazio, Salvatore /G-5156-2010; Orlov, Ilya/E-6611-2012; Doyle, Anthony/C-5889-2009; Alexa, Calin/F-6345-2010; Moorhead, Gareth/B-6634-2009; Livan, Michele/D-7531-2012; Takai, Helio/C-3301-2012; Petrucci, Fabrizio/G-8348-2012; Jones, Roger/H-5578-2011; Fabbri, Laura/H-3442-2012; Kurashige, Hisaya/H-4916-2012; Villa, Mauro/C-9883-2009; Delmastro, Marco/I-5599-201

    Searches for the Z gamma decay mode of the Higgs boson and for new high-mass resonances in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    SCOAP

    Search for diphoton events with large missing transverse momentum in 1 fb(-1) of 7 TeV proton-proton collision data with the ATLAS detector ATLAS Collaboration

    No full text
    A search for diphoton events with large missing transverse momentum has been performed using 1.07 fb(-1) of proton-proton collision data at root s = 7 TeV recorded with the ATLAS detector. No excess of events was observed above the Standard Model prediction and 95% Confidence Level (CL) upper limits are set on the production cross section for new physics. The limits depend on each model parameter space and vary as follows: sigma < (22-129) fb in the context of a generalised model of gauge-mediated supersymmetry breaking (GGM) with a bino-like lightest neutralino, sigma < (27-91) fb in the context of a minimal model of gauge-mediated supersymmetry breaking (SPS8), and sigma < (15-27) fb in the context of a specific model with one universal extra dimension (UED). A 95% CL lower limit of 805 GeV, for bino masses above 50 GeV, is set on the GGM gluino mass. Lower limits of 145 TeV and 1.23 TeV are set on the SPS8 breaking scale Lambda and on the UED compactification scale 1/R, respectively. These limits provide the most stringent tests of these models to date. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved
    corecore