24 research outputs found

    Long-term prognosis after kidney donation: a propensity score matched comparison of living donors and non-donors from two population cohorts

    Get PDF
    Background: Live donor nephrectomy is a safe procedure. However, long-term donor prognosis is debated, necessitating high-quality studies. Methods: A follow-up study of 761 living kidney donors was conducted, who visited the outpatient clinic and were propensity score matched and compared to 1522 non-donors from population-based cohort studies. Primary outcome was kidney function. Secondary outcomes were BMI (kg/m2), incidences of hypertension, diabetes, cardiovascular events, cardiovascular and overall mortality, and quality of life. Results: Median follow-up after donation was 8.0 years. Donors had an increase in serum creatinine of 26 μmol/l (95% CI 24–28), a decrease in eGFR of 27 ml/min/1.73 m2 (95% CI − 29 to − 26), and an eGFR decline of 32% (95% CI 30–33) as compared to non-donors. There was no difference in outcomes between the groups for ESRD, microalbuminuria, BMI, incidence of diabetes or cardiovascular events, and mortality. A lower risk of new-onset hypertension (OR 0.45, 95% CI 0.33–0.62) was found among donors. The EQ-5D health-related scores were higher among donors, whereas the SF-12 physical and mental component scores were lower. Conclusion: Loss of kidney mass after live donation does not translate into negative long-term outcomes in terms of morbidity and mortality compared to non-donors. Trial registration: Dutch Trial Register NTR3795

    Methodology used in studies reporting chronic kidney disease prevalence: a systematic literature review

    Get PDF
    Background Many publications report the prevalence of chronic kidney disease (CKD) in the general population. Comparisons across studies are hampered as CKD prevalence estimations are influenced by study population characteristics and laboratory methods. Methods For this systematic review, two researchers independently searched PubMed, MEDLINE and EMBASE to identify all original research articles that were published between 1 January 2003 and 1 November 2014 reporting the prevalence of CKD in the European adult general population. Data on study methodology and reporting of CKD prevalence results were independently extracted by two researchers. Results We identified 82 eligible publications and included 48 publications of individual studies for the data extraction. There was considerable variation in population sample selection. The majority of studies did not report the sampling frame used, and the response ranged from 10 to 87%. With regard to the assessment of kidney function, 67% used a Jaffe assay, whereas 13% used the enzymatic assay for creatinine determination. Isotope dilution mass spectrometry calibration was used in 29%. The CKD-EPI (52%) and MDRD (75%) equations were most often used to estimate glomerular filtration rate (GFR). CKD was defined as estimated GFR (eGFR) <60 mL/min/1.73 m2 in 92% of studies. Urinary markers of CKD were assessed in 60% of the studies. CKD prevalence was reported by sex and age strata in 54 and 50% of the studies, respectively. In publications with a primary objective of reporting CKD prevalence, 39% reported a 95% confidence interval. Conclusions The findings from this systematic review showed considerable variation in methods for sampling the general population and assessment of kidney function across studies reporting CKD prevalence. These results are utilized to provide recommendations to help optimize both the design and the reporting of future CKD prevalence studies, which will enhance comparability of study result

    1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed &gt;50 loci at which common variants with minor allele frequency &gt;5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value &lt; 5 × 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR &lt; 0.05) genes and 127 significantly (FDR &lt; 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until whole-genome sequencing becomes feasible in large samples

    Integration of genome-wide association studies with biological knowledge identifies six novel genes related to kidney function

    Get PDF
    In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological information may further understanding of the pathophysiology of clinical traits. To discover novel associations with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near previously validated eGFR associations. It then requires association thresholds consistent with multiple testing, and finally evaluates novel candidates by independent replication. Among the samples of European ancestry, we identified a genome-wide significant SNP in FBXL20 (P = 5.6 × 10−9) in meta-analysis of all available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting multiple-testing corrected significance for replication and overall P-values of 4.5 × 10−4-2.2 × 10−7. Neither the novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches. LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight integration of existing genome-wide association data with independent biological knowledge to uncover novel candidate eGFR associations, including candidates lacking known connections to kidney-specific pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be needed to assess its potential for discovery in genera

    Genome-wide association and functional follow-up reveals new loci for kidney function

    Get PDF
    Chronic kidney disease (CKD) is an important public health problem with a genetic component. We performed genome-wide association studies in up to 130,600 European ancestry participants overall, and stratified for key CKD risk factors. We uncovered 6 new loci in association with estimated glomerular filtration rate (eGFR), the primary clinical measure of CKD, in or near MPPED2, DDX1, SLC47A1, CDK12, CASP9, and INO80. Morpholino knockdown of mpped2 and casp9 in zebrafish embryos revealed podocyte and tubular abnormalities with altered dextran clearance, suggesting a role for these genes in renal function. By providing new insights into genes that regulate renal function, these results could further our understanding of the pathogenesis of CKD

    New genetic loci link adipose and insulin biology to body fat distribution.

    Get PDF
    Body fat distribution is a heritable trait and a well-established predictor of adverse metabolic outcomes, independent of overall adiposity. To increase our understanding of the genetic basis of body fat distribution and its molecular links to cardiometabolic traits, here we conduct genome-wide association meta-analyses of traits related to waist and hip circumferences in up to 224,459 individuals. We identify 49 loci (33 new) associated with waist-to-hip ratio adjusted for body mass index (BMI), and an additional 19 loci newly associated with related waist and hip circumference measures (P < 5 × 10(-8)). In total, 20 of the 49 waist-to-hip ratio adjusted for BMI loci show significant sexual dimorphism, 19 of which display a stronger effect in women. The identified loci were enriched for genes expressed in adipose tissue and for putative regulatory elements in adipocytes. Pathway analyses implicated adipogenesis, angiogenesis, transcriptional regulation and insulin resistance as processes affecting fat distribution, providing insight into potential pathophysiological mechanisms

    1000 Genomes-based metaanalysis identifies 10 novel loci for kidney function

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed >50 loci at which common variants with minor allele frequency >5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-Analysis of kidney function based on the estimated glomerular filtration rate (EGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 × 10-8 previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, wh

    1000 Genomes-based meta-analysis identifies 10 novel loci for kidney function

    Get PDF
    HapMap imputed genome-wide association studies (GWAS) have revealed > 50 loci at which common variants with minor allele frequency > 5% are associated with kidney function. GWAS using more complete reference sets for imputation, such as those from The 1000 Genomes project, promise to identify novel loci that have been missed by previous efforts. To investigate the value of such a more complete variant catalog, we conducted a GWAS meta-analysis of kidney function based on the estimated glomerular filtration rate (eGFR) in 110,517 European ancestry participants using 1000 Genomes imputed data. We identified 10 novel loci with p-value < 5 x 10(-8) previously missed by HapMap-based GWAS. Six of these loci (HOXD8, ARL15, PIK3R1, EYA4, ASTN2, and EPB41L3) are tagged by common SNPs unique to the 1000 Genomes reference panel. Using pathway analysis, we identified 39 significant (FDR < 0.05) genes and 127 significantly (FDR < 0.05) enriched gene sets, which were missed by our previous analyses. Among those, the 10 identified novel genes are part of pathways of kidney development, carbohydrate metabolism, cardiac septum development and glucose metabolism. These results highlight the utility of re-imputing from denser reference panels, until wholegenome sequencing becomes feasible in large samples

    Genetic associations at 53 loci highlight cell types and biological pathways relevant for kidney function.

    Get PDF
    Reduced glomerular filtration rate defines chronic kidney disease and is associated with cardiovascular and all-cause mortality. We conducted a meta-analysis of genome-wide association studies for estimated glomerular filtration rate (eGFR), combining data across 133,413 individuals with replication in up to 42,166 individuals. We identify 24 new and confirm 29 previously identified loci. Of these 53 loci, 19 associate with eGFR among individuals with diabetes. Using bioinformatics, we show that identified genes at eGFR loci are enriched for expression in kidney tissues and in pathways relevant for kidney development and transmembrane transporter activity, kidney structure, and regulation of glucose metabolism. Chromatin state mapping and DNase I hypersensitivity analyses across adult tissues demonstrate preferential mapping of associated variants to regulatory regions in kidney but not extra-renal tissues. These findings suggest that genetic determinants of eGFR are mediated largely through direct effects within the kidney and highlight important cell types and biological pathways
    corecore