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In conducting genome-wide association studies (GWAS), analytical approaches leveraging biological infor-
mation may further understanding of the pathophysiology of clinical traits. To discover novel associations
with estimated glomerular filtration rate (eGFR), a measure of kidney function, we developed a strategy for
integrating prior biological knowledge into the existing GWAS data for eGFR from the CKDGen
Consortium. Our strategy focuses on single nucleotide polymorphism (SNPs) in genes that are connected
by functional evidence, determined by literature mining and gene ontology (GO) hierarchies, to genes near
previously validated eGFR associations. It then requires association thresholds consistent with multiple test-
ing, and finally evaluates novel candidates by independent replication. Among the samples of European an-
cestry, we identified a genome-wide significant SNP in FBXL20 (P 5 5.6 3 1029) in meta-analysis of all
available data, and additional SNPs at the INHBC, LRP2, PLEKHA1, SLC3A2 and SLC7A6 genes meeting mul-
tiple-testing corrected significance for replication and overall P-values of 4.5 3 1024–2.2 3 1027. Neither the
novel PLEKHA1 nor FBXL20 associations, both further supported by association with eGFR among African
Americans and with transcript abundance, would have been implicated by eGFR candidate gene approaches.
LRP2, encoding the megalin receptor, was identified through connection with the previously known eGFR
gene DAB2 and extends understanding of the megalin system in kidney function. These findings highlight
integration of existing genome-wide association data with independent biological knowledge to uncover
novel candidate eGFR associations, including candidates lacking known connections to kidney-specific
pathways. The strategy may also be applicable to other clinical phenotypes, although more testing will be
needed to assess its potential for discovery in general.

INTRODUCTION

Chronic kidney disease (CKD) is a major public health
burden, affecting up to 13% of the US population and compar-
able proportions of other populations worldwide (1,2). The
clinical ramifications of CKD extend beyond the kidney to co-
morbidities including hypertension and cardiovascular disease.
CKD is defined via the estimated glomerular filtration rate
(eGFR) (3), which is heritable (4,5). The findings from
genome-wide association studies (GWAS) of CKD and
eGFR have identified multiple loci in biological pathways
related to nephrogenesis, podocyte function, angiogenesis,
solute transport and metabolic functions of the kidney (6,7).
However, the validated associations in the largest GWAS
explain only about 1.4% of the variation in eGFR, suggesting
that the published data for CKD and eGFR still include a large

number of true genetic associations awaiting identification and
validation (6).

Given the modest effect sizes of the common genetic var-
iants identified by GWAS and the stringent statistical signifi-
cance levels in GWAS (P , 5 × 1028) (8), increasing
sample size has been the conventional approach for providing
statistical power to detect these additional loci. However, the
sample size for GWAS may be limited by the availability of
studies with the phenotype of interest. Thus, identification
and validation of true but modest associations may require
novel methods, including prioritizing single nucleotide poly-
morphism (SNP) associations through independent biological
knowledge. One such approach may be to restrict genome-
wide analysis to a more targeted search, focused on genes
that are connected, in a biological sense, to genes at previously
validated GWAS loci, here for eGFR association.
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The objective of this study was, therefore, to identify novel
CKD and eGFR-associated candidate loci through systematic
application of prior biological knowledge within an existing
eGFR GWAS, followed by external replication for eGFR asso-
ciation in separate studies, and association testing with other
related phenotypes. To do so, our goal was to develop an algo-
rithmic strategy focused on candidate genes that were con-
nected to previously validated eGFR loci through pairwise
gene similarities derived from natural language processing
of PubMed abstracts in Gene Relationships Across Implicated
Loci (GRAIL) (9,10) as well as a pairwise metric of biological
relatedness derived from the gene ontology (GO) gene set
classifications (11).

RESULTS

Information about cohorts and baseline characteristics of all
study populations of European ancestry totaling 130 600 indivi-
duals are presented in the Supplementary Material, Tables S1,
S3 and S4 (Women’s Genome Health Study ,WGHS, and first
meta-analysis) and Supplementary Material, Tables S2, S5 and
S6 (external replication cohorts¼ second meta-analysis).

Figure 1 depicts a multistep strategy for identifying novel
candidate associations with eGFR on the basis of inferred bio-
logical connections to 24 seed genes implicated by previous
GWAS as, in most cases, the nearest gene to a replicated
eGFR SNP (see Methods); biological connections were in-
ferred from similarities in published scientific abstracts
(GRAIL) and GO hierarchies. The 24 seed genes used as the
input to the strategy are presented in Supplementary Material,
Table S7. As described in the Methods section, the number of
top-ranked candidate genes considered for each seed gene was
optimal for N ¼ 25, i.e. the number of candidates yielding a
minimal overall false discovery rate (FDR) in the first replica-
tion sample (Supplementary Material, Tables S8–S11). In
addition, restricting candidate genes to On-line Mendelian In-
heritance in Man (OMIM) rather than RefSeq yielded lower
overall FDR estimates in the first replication sample (see
Materials and Methods). Applying this optimized method to
each of the 24 seed genes resulted in 33 candidate SNP asso-
ciations that were located in one of 416 unique candidate
genes and associated with eGFR at P , 0.05 after gene-wide
correction for the number of SNPs (see Methods). These 33
SNPs were tested in the first replication meta-analysis and it
was estimated that 0.07, i.e. 7%, represented null hypotheses,
implying that an estimated 31 [33∗(1–0.07)] of the associations
were true (Supplementary Material, Table S8). In contrast,
when 24 randomly chosen seeds were used instead of the 24
validated GFR seeds, the estimated fraction of hypotheses
representing the null in the first replication meta-analysis was
a median 0.58 (inter-quartile range 0.44–0.78), i.e. 58%. Fur-
thermore, this estimate did not vary according to the number
of candidate genes selected for each seed gene (Supplementary
Material, Table S8), emphasizing the relative estimated enrich-
ment of true associations when the algorithm was applied to the
authentic seed genes. Examining more than 25 candidates per
seed gene led to an estimated smaller fraction of true associa-
tions but a greater total number overall (Supplementary Mater-
ial, Table S8). Not restricting the candidate genes to OMIM

resulted in lower estimates for the fraction of true associations
(compare Supplementary Material, Tables S8–S11). Very
similar results were observed when considering SNPs within
10 000 bp of each candidate gene instead of 1000 bp (see
Methods, compare Supplementary Material, Tables S8–S11).

With the optimized algorithm, namely investigating SNPs
within 1000 bp of each of the 25 most related OMIM genes
per seed gene, 10 candidate SNPs were selected for replication
in a second meta-analysis (Step 4, Fig. 1) consisting of 18 in-
dependent cohorts totaling 56 246 samples. Five of the ten
SNPs were selected because of an association with eGFR at
P , 0.05 in the first replication meta-analysis and with the
same direction of effect as in the WGHS discovery sample
derived from applying the optimized algorithm with the
GRAIL metric (Supplementary Material, Table S8, bold).
The remaining five SNPs had the smallest P-values selected
similarly from applying the algorithm using the GO pairwise
similarity metric as opposed to the GRAIL metric.

In the independent, second replication, six of the ten SNPs
met the required FDR standard of q-value ,0.05 (Table 1).
They had one-sided P-values ranging from 5.6 × 1022 to
6.9 × 1025 and combined P-values (discovery and all replica-
tion) from 4.5 × 1024 to 5.6 × 1029. These SNPs mapped in
or near to LRP2 on chromosome 2, PLEKHA1 on chromosome
10, SLC3A2 on chromosome 11, INHBC on chromosome 12,
SLC7A6 on chromosome 16 and FBXL20 on chromosome
17. This last SNP, rs7208487, reached conventional genome-
wide significance in the combined analysis (pcomb ¼ 5.6 ×
1029). The six SNPs, as well as three of the remaining four

Figure 1. Overview of analytic strategy. Seed genes (step 0) were chosen, in
most cases, on the basis of proximity to previously validated genome-wide sig-
nificant associations (see Methods) (6).
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considered for independent replication that had FDR . 0.05
in the second independent replication, had direction of effect
concordant with the WGHS discovery sample [P-value for
directional consistency (binomial distribution) ¼ 0.01, Table 1
and Supplementary Material, Table S12]. The GRAIL words
and GO terms defining the connections between the seed and
candidate genes are shown in Table 2, and detailed information
about each of the six replicated genes is provided in Box 1.

Regional association plots using imputed SNP data from the
combined WGHS and first CKDGen replication meta-analysis
confirmed that each replicating SNP was among the SNPs with
the lowest P-values within each candidate gene, as expected by
design (Supplementary Material, Fig. S1A–F). At the LRP2
locus, the replicated GFR-associated SNP rs10490130 is one
of two highly significant SNPs in the region; the second SNP
(rs6433115), which has a smaller P-value in the first
meta-analysis than rs10490130, is located in a separate block
of linkage disequilibrium (LD) and was not selected for replica-
tion because it was not genotyped in the WGHS (Supplementary
Material, Fig. S1A).

To further support and characterize the six novel replicating
SNPs, we assessed the association with eGFR in an existing
genome-wide association study among African-Americans
from the CARe Consortium (N . 7300, Table 3) (12). In this in-
dependent sample, the SNPs at PLEKHA1 and FBLX20 showed
nominally significant association with eGFR, and the minor
allele at all six SNPs had the same direction of effect on eGFR

compared with the discovery and replication cohorts of Euro-
pean ancestry (directional consistency test, P ¼ 0.031). More-
over, when looking at the entire gene region rather than at the
index SNP only, the most significantly associated SNP at three
loci (PLEKHA1, FBLX20, SLC7A6) met nominal significance
after correction for the number of independent SNPs in each
region evaluated, while the most significantly associated SNP
at LRP2 narrowly missed the threshold for locus-wide signifi-
cance but showed a larger effect than the LRP2 index SNP
among European ancestry individuals (Table 3).

We also evaluated whether the six index SNPs were asso-
ciated in cis with the expression of a nearby transcript in
several tissues (eQTL, see Methods, Table 4). Of the six
SNPs, intronic rs4751890 in the PLEKHA1 gene was the
only eQTL SNP for its assigned candidate gene, displaying a
significant association with PLEKHA1 transcript levels in
blood (P ¼ 8 × 1024) and lymphocytes (P ¼ 2 × 1023). In
blood (13), it was the strongest expression-related SNP for
this transcript among all SNPs. Increasing copies of the minor
allele of rs4751890 were associated with decreased levels of
PLEKHA1 expression (13) and with increased eGFR
(Table 1). Among the other SNPs, rs6499166 in SLC7A6,
rs7208487 at FBXL20 and rs489381 at SLC3A2 were associated
with gene expression in cis but none was an eQTL for one of the
candidate genes (Supplementary Material, Table S13).

A separate eQTL analysis on kidney biopsies from 81 indi-
viduals in two patient cohorts did not show significant

Table 1. Genome-wide and suggestive SNPs identified using GRAIL and GO metrics of biological relatedness to seed genes

SNP information GRAIL GO

SNP rs10490130 rs4751890 rs489381 rs6499166 rs7208487 rs3741414
Position (chromosome:basepair) chr2:169807356 chr10:124151780 chr11:62408638 chr16:66884417 chr17:34796974 chr12:56130315
A1/A2a (WGHS) C/A C/T A/G G/A G/T T/C
Minor allele frequency (WGHS) 0.08 0.40 0.10 0.28 0.16 0.23
Candidate gene LRP2 PLEKHA1 SLC3A2 SLC7A6 FBXL20 INHBC
Seed gene DAB2 PIP5K1B SLC7A9 SLC7A9 UBE2Q2 VEGFA
Candidate gene rank in GRAILc 18 15 8 10 – –
Gene size (bp) 235504 57647 32836 37300 141037 16067
WGHS only (N ¼ 21 940)

Effectb 20.014 0.005 20.010 20.008 0.008 0.010
Standard errorb 0.004 0.002 0.004 0.002 0.003 0.003
P-value 6.8E204 1.7E202 6.0E203 8.9E204 6.1E203 2.5E204
Number of SNPs in gene in WGHS 45 3 3 2 3 2
Best gene-wide corrected P-value 3.0E202 4.9E202 1.8E202 1.8E203 1.8E202 5.0E204

Meta lacking WGHS (N ¼ 52 414) ¼ first replication meta-analysis
Effectb 20.005 0.004 20.005 20.004 0.007 0.006
Standard errorb 0.003 0.001 0.002 0.002 0.002 0.002
P-value 4.4E202 7.0E203 4.3E202 7.8E203 4.1E204 5.6E204

Combined WGHS and first replication meta-analysis (N ¼ 74 354)
Effectb 20.008 0.004 20.006 20.005 0.007 0.007
Standard errorb 0.002 0.001 0.002 0.001 0.002 0.002
P-value 6.3E204 4.1E204 1.6E203 7.1E205 1.0E205 3.7E206

Second independent replication meta-analysis (N ¼ 56 246)
Effectb 20.008 0.002 20.004 20.004 0.008 0.004
One-sided P-value 6.5E204 5.6E202 3.8E202 6.9E204 6.9E205 7.5E203
FDR q-value 4.6E204 1.9E202 1.5E202 4.6E204 1.4E204 3.7E203

All samples combined (N ¼ 130 600)
Effectb 20.008 0.003 20.005 20.005 0.007 0.006
P-value 2.8E206 2.5E204 4.5E204 3.8E207 5.6E209 2.2E207

aMinor allele (A1) and major allele (A2).
bEffect and standard error for the effect of each additional copy of the minor allele.
cRank of candidate gene in similarity to the seed gene by GRAIL metric among all non-seed genes in OMIM.
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association between the index SNPs or highly correlated SNPs
and gene expression in cis (see Methods, Supplementary Ma-
terial, Tables S13 and S14).

To evaluate whether the associations with eGFR reflected
effects on kidney function more broadly, we investigated asso-
ciation of the six replicating SNPs with other renal phenotypes
in recently published genome-wide scans (14). The Supple-
mentary Material, Table S15, shows that none of the SNPs
showed significant associations with either microalbuminuria
(MA) or the urinary albumin-to-creatinine ratio (both N ¼ 63
153) after correction for multiple testing. Variants in moderate
LD (r2 . 0.6) with intronic rs7208487 in FBXL20 are signifi-
cantly associated with the concentrations of urinary histidine
and tyrosine among a selection of urinary metabolites exam-
ined (15).

As effects on kidney function may also have ramifications
for blood pressure phenotypes or incident cardiovascular
disease, associations for the six SNPs were examined in
GWAS data from the International Consortium for Blood
Pressure (ICBP) (systolic and diastolic blood pressure) and
the CARDIoGRAM (myocardial infarction) Consortia. No
associations were observed for any of the SNPs (Supplemen-
tary Material, Table S15).

Finally, we interrogated the NHGRI GWAS catalog for
associations of variants at the loci identified here with add-
itional phenotypes (Supplementary Material, Table S16).
The region containing INHBC on chromosome 12 was identi-
fied in association with serum urate concentrations (16) and
rs3741414 in the 3′-UTR of INHBC identified in our study
is in high LD with the top urate-associated SNP (r2 ¼ 0.84).
The allele associated with higher urate levels is associated
with lower eGFR, in agreement with the known relationship
between serum urate levels and kidney function.

DISCUSSION

We identify six novel associations for eGFRcrea, one genome-
wide significant and the remaining five highly suggestive,
through a systematic strategy that uses data from existing
meta-analyses of GWAS to select and replicate new SNP asso-
ciations not identified in an initial genome-wide scan. This is
accomplished through the selection of SNPs in genes that are
connected to genes containing previously confirmed SNP asso-
ciations on the basis of existing biological knowledge. Our

approach may represent a way to identify novel associated
genomic regions for other complex phenotypes without the
need for further increase in the sample size. Although more
testing will be needed to assess its utility in general, the ap-
proach can be applied whenever there is access to genome-
wide SNP data in a single study and results from a GWAS
meta-analysis for primary replication. All of the GFR associa-
tions at the six novel genomic regions satisfy conventional
statistical thresholds for overcoming multiple hypothesis
testing, and rs7208487 in FBXL20 meets the standard genome-
wide significance threshold (P , 5 × 1028) in the combined
discovery and replication meta-analyses totaling 130 600
samples. However, the power for detecting the other associa-
tions even in the combined sample at genome-wide signifi-
cance ranged only from 0.01 to 0.21. It may have been
further diminished by demographic differences between the
discovery cohort (WGHS) and the replication meta-analyses,
thus emphasizing the challenges for establishing genome-wide
significance for these SNPs and other weak but possibly true
replicating associations with GFR even with a large sample.

Biological and methodological context of findings

While the biological functions of some of the novel candidate
genes are more certain than others, the connections with the
seed genes emphasize roles in solute transport, endocytosis,
posttranscriptional modification and development (Table 2).
For some of the genes, a role in the kidney is known and dys-
functions of the encoded proteins could plausibly be linked to
reduced eGFR. This is the case for the genes encoding subu-
nits of an amino acid transport complex expressed in kidney,
SCL7A6 and SLC3A2, and for LRP2, encoding megalin,
which has a known function in the reabsorption of albumin
and other low molecular weight proteins from the urine.
Rare mutations in LRP2 have been described as a cause of
Donnai–Barrow and facio-oculo-acoustico-renal syndromes
(17). Conversely, PLEKHA1 and FBXL20 were connected to
their seed genes by terms that are not specific to the kidney
(Table 2). The lack of a prior connection to kidney function
for these last two candidates, PLEKHA1 and FBXL20, under-
scores the potential for identifying novel eGFR-associated
genes and thus advancing biological understanding by the
strategy we describe. These genes would not have been iden-
tified at genome significance in an initial meta-analysis nor

Table 2. Gene function for genome-wide significant and suggestive associations

Candidate seed N GRAIL
words

N (%) words for
50% of GRAIL score

GRAIL words/GO terms connecting seed and candidate

LRP2 DAB2 1940 10 (0.52%) Megalin, dab2, disabled, endocytic, receptor, epithelial, 2,
endocytosis, binding, lipoprotein

SLC7A6 SLC7A9 996 9 (0.90%) 4f2hc, transport, amino, transporter, dibasic, acid, barcelona,
kidney, acids

SLC3A2 SLC7A9 1124 7 (0.62%) Cystinuria, 4f2hc, cystine, 4f2, transport, amino, transporter
PLEKHA1 PIP5K1B 819 6 (0.73%) Ptdins, phosphatidylinositol, 4, bisphosphate, phosphate, actin
FBXL20 (from GO) UBE2Q2 NA NA Modification-dependent protein catabolic process,

post-translational protein modification, regulation of protein
metabolic process

INHBC (from GO) VEGFA NA NA Kidney-specific (1): kidney development, not kidney-specific (43),
e.g. mRNA stabilization, primitive erythrocyte differentiation,
cell maturation, cell migration
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would they have been investigated in a classical candidate
gene approach that focused on biological pathways specific
to the kidney. It is worth noting, however, that single SNPs
rather than genes were replicated, and follow-up experimental

evidence is needed to confirm that the genes that suggested the
associations are indeed the causal genes in the region.

In conventional genome-wide genetic analysis, where the
evidence for association is solely statistical, SNPs selected
for replication typically rank among the top few hundred
according to P-value. This corresponds approximately to the
top ,0.008% in a study based on HapMap (r22) imputed gen-
otypes at �2.6 million SNPs. In contrast, the SNPs selected
for replication by our prioritization approach had clearly
lower ranks, and none of the 10 loci advanced for a second rep-
lication here was among the top 10 with associations just above
genome-wide significance thresholds (p.5∗1028). Among 146
215 genotyped WGHS SNPs mapping within 1000 bp of
Refseq genes, the ranks of the six replicated SNPs ranged
from the top 0.10 to 2.33% (114823409th, Table 5), and
0.23–6.23% (all RefSeq) or 0.24–6.31% (OMIM only) for
the gene-wide corrected P-values used in the SNP selection
algorithm. Thus, these SNPs would have been unlikely to be
selected for replication on the basis of P-value alone.

Comparison with other approaches

The strategy used here can be compared and contrasted with
previously reported approaches for integrating prior biological
information into genome-wide association analysis. First, the
pairwise gene similarity matrix used in the development of
the strategy and for SNP selection is derived from GRAIL dir-
ectly (10). GRAIL computes P-values for the scores of binary
connections between genes tagged by independently selected
candidate SNPs, including sub-genome-wide associations
where it has been proven effective in identifying novel repli-
cating SNPs (9). This application of GRAIL may be useful
in resolving the ambiguity in assignment of the gene under-
lying an observed genome-wide association. Our strategy
differs in prioritizing genes on the basis of gene-wide cor-
rected rather than uncorrected association P-values. We also
relied on a discovery and first replication approach guided
by the FDR. This two-stage approach may have diminished
overall power for individual associations, but also provided
empirical support for proceeding to the second replication
step. There was little benefit of the two-stage approach in iden-
tifying potentially heterogeneous associations that would
otherwise have been missed, since heterogeneity was modest
among the six novel associations in the meta-analysis combin-
ing all samples (I2 range 0–37%). A final difference between
our strategy and typical GRAIL applications was the selection
of candidates on the basis of the rank of the gene–gene score
rather than a fixed threshold of the quantitative gene score. By
design, functional inferences in GRAIL may be most accurate
with a quantitative rather than ordinal interpretation of the
gene–gene scores, especially for the top connections.
However, we note that the gene–gene scores between the
25th ranked candidates and each of the seed genes were com-
parable having a mean (SD) of 0.24 (0.12) and none was
.0.65 (within a maximal range of 0–1).

Second, there is overlap with gene set methods that test for
an over-abundance of significant associations mapping to pre-
specified collections of genes with related function termed
“gene sets” (18–20). These gene sets may be inferred from
the literature and often include the GO gene collections,

Box 1. Known functions of genome-wide significant
and suggestive genes for eGFR.

FBXL20: little published evidence links F-box and
leucine-rich repeat protein 20 to renal function, except an
expression pattern that includes kidney. The gene product
has been reported to have a role in regulatory pathways in-
volving ubiquitination (57), which have also been sug-
gested for its seed gene, UBE2Q2.

INHBC: identified through its seed gene VEGFA, which
may be related to renal function through developmental
processes. The INHBC gene encodes the beta C chain of
inhibin (58), which belongs to the TGF-beta superfamily
and together with other subunits forms activin complexes.
Activins have a role in the regulation of hormone secretion
as well as cell differentiation and growth including branch-
ing of the kidney, but the specific role of the subunit
encoded by INHBC is not well studied.

LRP2: encodes for megalin, which as part of a complex
with cubilin and amnionless has a known function in the
reabsorption of albumin and other low molecular weight
proteins from the urine (59). LRP2 is connected to its
seed gene, DAB2, through protein–protein interaction
(60). Megalin localizes to the proximal renal tubule; the
mechanism by which it is connected to eGFR is presently
unclear but could include protein internalization and subse-
quent renal damage (59) Rare mutations in LRP2 have
been identified in patients with Donnai–Barrow and
facio-oculo-acoustico-renal syndromes (17). We previous-
ly identified variants in CUBN, encoding for cubilin, as
associated with UACR (14), but the GFR-associated SNP
in LRP2 identified here did not show association with
UACR or MB. This implies that variation in different com-
ponents of the megalin complex associates with different
measures and mechanisms of kidney disease.

PLEKHA1: a potential link to renal physiology is its ex-
pression in renal tubule cells. It is reported to localize to the
plasma membrane and binds to phosphatidylinositol-3,
4-bisphosphate (61), which suggests a role in signaling con-
sistent with the phosphatidylinositol-4-phosphate-5-kinase
activity encoded by its seed gene, PIP5K1B. Recently, a
role in the regulation of insulin sensitivity has been reported
for the PLEKHA1-encoded protein (62). Polymorphisms in
the PLEKHA1 gene are associated with age-related macular
degeneration (63–65).

SLC7A6 and SLC3A2: the gene products of both
SLC7A6 and SLC3A2 interact, and their co-expression
facilitates the uptake or exchange of amino acids such as
arginine, leucine and glutamine for example in the
kidney (66). The protein encoded by SLC3A2 is expressed
at high levels in both freshly isolated and cultured podo-
cytes, kidney-specific cells (67). Both genes were identi-
fied based on the seed genes SLC7A9.
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which were transformed here for a gene–gene similarity
metric alternative to the GRAIL metric. Some gene set
methods further adopt the strategy of establishing the signifi-
cance for each gene through gene-wide multiple hypothesis
correction as was done in our strategy (19).

Finally, recent applications have begun incorporating
protein–protein interaction data to find connections among
candidate genes, allowing not only binary but also multivalent
connections (21). Although protein–protein interaction data
may be considered more reliable than text-based inference
as in GRAIL, the total number of genes in the human
genome explored for protein–protein interaction is currently
smaller than the number explored through the literature. In
preliminary analyses, a multivalent strategy based on
GRAIL similarity scores was not encouraging, in part
because the GRAIL connections among our GFR seed genes
were weak (data not shown).

Strengths and limitations

Our findings, which are supported by independent replication,
highlight both novel candidate associations for eGFR and the
biological context through which they may act. The latter
aspect of the approach is typically not conferred by analysis
based solely on statistical considerations. One concern with
this approach may be a potential bias introduced by the reli-
ance on prior biological knowledge as represented in the sci-
entific literature. While some of our results may be
influenced by the fact that some genes are better studied
than others, it is interesting to observe that biological informa-
tion directly related to eGFR does not account for all of the
identified connections. For instance, the connections of the
seed genes to PLEKHA1 and FBXL20 were more closely
related to their inferred molecular properties than to kidney
function (Table 2). As genome-wide analyses of gene expres-
sion continue to supply public databases with new, tissue-
specific and unbiased snapshots of the functional state, inte-
gration of prior biological information into genome-wide asso-
ciation analysis can be expected to become less biased and
increasingly revealing.

Searching for new candidate genes through inferred bio-
logical connections was more efficient using the previously
validated eGFR-associated seeds compared with genes
chosen at random, emphasizing the gains in specificity pro-
vided by the method. However, we note that the enrichment
of true associations as estimated by the QVALUE algorithm
applied to results from the first replication may have an
upward bias. In spite of an estimated alternative hypothesis
rate of 0.93 (¼1–0.07), only 6 of 33 candidates in the first rep-
lication had P , 0.05 in SNP selection with the GRAIL
metric, and the lower estimated rate of the null hypotheses
compared with estimates using randomly chosen seed genes
appears to derive from overall excess of smaller rather than
significant P-values (e.g. of 33 SNPs, 9 had P , 0.1, 15 had
P , 0.2, median P ¼ 0.34; see Supplementary Material,
Table S8 for estimated rate and inter-quartile range for
random seed genes). With this caveat in mind, it is noteworthy
that the estimated yield of true associations when substituting
randomly selected genes for the previously validated seed
genes was still appreciable (Supplementary Material,T
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Table S8), possibly suggesting abundant sub-genome-wide
SNP associations with eGFR, as has been observed also in
genome-wide studies of other clinical phenotypes (e.g.
height (22,23)). Some of these additional candidate associa-
tions with eGFR may be validated by replication through the
statistical power of larger replication samples.

Finally, we cannot exclude the possibility that—despite
prior evidence connecting the seed genes to genes identified
here—one or more of the causal variants presumed to underlie
the observed associations influence the function not of one of
the six novel genes but instead neighboring genes not explicit-
ly implicated by our strategy.

Conclusions

Our strategy’s potential yield of true associations as judged by
the FDR highlights the vast repository of modest but true asso-
ciations remaining to be discovered in existing genome-wide
scans of eGFR. The six novel loci, including one genome-wide
significant association in FBXL20, are assigned to at least
five distinct biological processes. They extend the role of
genome-wide analysis in understanding the genetic under-
pinnings influencing kidney function. Thus, our findings
provide a starting point for functional studies, which may
lead to additional insights into kidney disease pathophysiology
and ultimately contribute to the potential for attenuating the
burden of kidney disease.

MATERIALS AND METHODS

We developed a multistep strategy to identify novel
eGFR-associated variants in genes that have a biological con-
nection to one or more of 24 genes within previously identified
and replicated genome-wide significant eGFR-associated loci
(Fig. 1, Step 0). Within each of these loci, the gene closest
to the SNP with the lowest P-value in the region was
chosen, except for the NAT8/ALMS1 and ANXA9/LASS2
regions, where the second closest gene was chosen on the
basis of pre-existing biological evidence: rare mutations in
ALMS1 lead to a Mendelian disorder featuring kidney
disease (24), and LASS2 (alias CERS2) 2/2 mice show
renal abnormalities (25). These 24 genes, termed ‘seed’
genes, form the starting point of the strategy and are listed
in Supplementary Material, Table S7. In outline, the strategy
consisted of specifying an algorithm for identifying SNP asso-
ciations (Fig. 1, Steps 1 and 2), exploring parameters of this

algorithm to optimize the estimated yield of true associations
with eGFR, selecting candidate SNPs for replication using the
optimized parameters and finally replicating the candidate
SNPs in two different datasets including an entirely independ-
ent replication meta-analysis of 56 246 individuals (Steps 3
and 4). The study populations, genotyping and statistical ana-
lyses are described in detail below.

Study populations

(1) The source dataset, from which the 24 seed genes were
derived, consisted of 20 study populations that formed the
CKDGen Consortium at the time of their publication (6).

(2) The primary sample for discovery of eGFR-associated
SNPs in genes implicated by the seed genes was the
WGHS, a large population-based cohort of female health
care professionals aged ≥45 at baseline (26). As described
elsewhere, 21 940 WGHS participants of verified, self-
reported European ancestry had information on whole
genome genotype data and baseline serum creatinine mea-
sures for estimating eGFR available as summarized in the
supplement (Supplementary Material, Table S1 sum-
marizes the WGHS cohort, Supplementary Material,
Table S3 shows WGHS baseline characteristics).

(3) Since the publication describing the 24 seed genes (6), the
CKDGen Consortium had expanded from the 20 original
cohorts to include 26 cohorts with information on
genome-wide genotypes and renal phenotypes. Informa-
tion about baseline characteristics of the 25 cohorts, ex-
cluding the WGHS, of European ancestry totaling 52
414 individuals that were used as the first replication
sample to verify SNPs associated in the WGHS are
listed in the supplement (Supplementary Material,
Table S1 summarizes the cohorts, Supplementary Mater-
ial, Table S3 shows baseline characteristics).

(4) The 18 cohorts of European ancestry totaling 56 246 indi-
viduals that comprised the second, independent replication
meta-analysis are described in the supplement (Supple-
mentary Material, Table S2 summarizes the cohorts, Sup-
plementary Material, Table S5 shows baseline
characteristics).

Phenotype definition

In each cohort, serum creatinine was measured as described in
the supplement (Supplementary Material, Tables S1 and S2)

Table 4. eQTLa analysis for rs4751890 at PLEKHA1

Index SNP Closest
gene

Tissue eSNP P-valueb Best eSNP in
that tissue

P-value of the best eSNP
for the given transcript

LD r2 index SNP
and best eSNP

Array ID Reference

rs4751890 PLEKHA1 Blood 7.95E205 Same SNP Same SNP n/a HSG00267573 (13)
Lymph 1.90E203 rs6585827 2.6E204 0.605 GI_31377719-S (35)
Blood 6.20E208,

2.30E206
rs6585827 1.5E211 0.605 3930541,

6650324
(56)

Lymph (lymphoid cells) and blood (peripheral blood mononuclear cells).
aMost significant local SNP association (eSNP) with PLEKHA1 transcript levels.
bSNPs with a P-value ,5.5 × 1024 meet a conservative Bonferroni-corrected significance threshold accounting for the test of six SNPs with expression in
15 different tissues.
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and in previous publications (6). To minimize inter-laboratory
variation in serum creatinine measurements among the study
cohorts, serum creatinine was calibrated to the National
Health and Nutrition Examination Study (NHANES) standards
in all discovery and replication studies as described previously
(27–29). The GFR was then estimated from the calibrated
serum creatinine using the four-variable MDRD study equa-
tion (30).

Genotype information

Information on genotyping, imputation and statistical analysis
methods for all participating cohorts is presented in Supple-
mentary Material, Table S4 (WGHS and first replication
sample) and Supplementary Material, Table S6 (second inde-
pendent replication sample).

Metrics of biological relatedness between pairs of genes

GRAIL infers relatedness between genes on the basis of
shared informative words extracted from PubMed abstracts
(10). The GRAIL relatedness information is summarized in
a sparse matrix, with genes in rows and informative words
in columns, so that each gene is represented as a vector of
the weights of the informative words. Each of the gene
vectors was first normalized to have a dot product with itself
equal to 1. The pairwise similarity score between two genes
was calculated as the dot product of their normalized word
vectors, i.e. a number between 0 and 1. The analysis presented
here used the GRAIL relatedness matrix constructed from
PubMed abstracts published through 2006, which largely pre-
dates information from GWAS to avoid influencing the results
by previously published information from GWAS.

The GO (http://www.geneontology.org) is a well-
established resource for the annotation of gene products
across species. The functional relatedness between pairs of
genes was derived from the semantic similarity between GO
terms associated with each gene as described in (11). GO
terms from all three ontologies (biological process, cellular
component or molecular function) were considered in the cal-
culation of the similarity value. Since gene ontologies are
directed acyclic graphs (DAG), the relationship between the
two GO terms reflects the relative locations of these terms in
the DAG graphs as well as their semantic relations (class-
subclass relation or partial ownership relation) with their an-
cestor terms.

Gene selection algorithm

Preliminaries
All analyses used gene assignments from Refseq downloaded
in March 2010 from the UCSC genome browser (http://genom
e.ucsc.edu). Gene names were mapped to Entrez gene IDs for
use with GRAIL using information downloaded from NCBI.
The OMIM database was downloaded in April 2010 from
NCBI. Mapping of SNPs to genic regions used the March
2006 build 36 reference sequence for the human genome
(hg18).T
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Algorithm
The algorithm used to identify eGFR-associated SNPs con-
sisted of three steps. First, for each seed gene, all genes in
OMIM or RefSeq (excluding the seed genes) were rank
ordered according to the GRAIL or GO metrics of relatedness
to the seed gene. A fixed number N of the most related genes
was designated as a set of candidate genes for further consid-
eration (Fig. 1, Step 1). Second, genotyped SNPs from the
WGHS mapping within a fixed number of base pairs (bp) of
the transcribed region of each candidate gene were examined
for association with eGFR in the WGHS genome-wide scan.
Only SNPs genotyped on the Illumina HumanHap300 chip
were used in order to keep the amount of LD between the
SNPs small. The SNP with the lowest P-value in each candi-
date gene was retained if its association with eGFR in the
WGHS had P , 0.05 after a stringent Bonferroni correction
for the number of genotyped SNPs mapping to that same
gene (Fig. 1, step 2). Third, SNPs meeting gene-wide signifi-
cance in the WGHS were then examined for association with
eGFR in the first replication meta-analysis, which did not
include the WGHS (Fig. 1, step 3). The decision to identify
associations using a discovery (WGHS) and replication
(meta-analysis of 25 CKDGen cohorts) strategy rather than a
combined larger discovery meta-analysis (26 cohorts, including
WGHS) in order to select SNPs for follow-up in external repli-
cation samples was based on several considerations, including
the large size of the WGHS, the relatively low LD among its
genotyped HumanHap300 chip and its epidemiologic homogen-
eity, the latter potentially allowing the detection of otherwise
heterogeneous associations. Moreover, splitting the available
samples between discovery and first replication addressed the
need for an intermediate replication sample to optimize the al-
gorithm using the FDR (next section). Statistical significance
thresholds and cutoffs for advancement of SNPs to the next
stage are provided in the section ‘Association analysis and Stat-
istical Significance for Discovery and Replication’.

Algorithm optimization
Three aspects of the algorithm as implemented with the
GRAIL metric were optimized using the estimated overall
FDR, designated as p0, applied to the P-values of SNP asso-
ciations in the first replication meta-analysis using the
QVALUE software with the default settings (Fig. 1, step 3).
As a first aspect, the fixed number N of most related genes
considered for each of the seed genes was varied from 10 to
200. As a second aspect, restricting the candidate genes to
the subset of genes in GRAIL with OMIM annotation (n ¼
10 978) was compared with the use of the complete set of
genes in GRAIL and also in RefSeq genes (n ¼ 19 698). As
a third aspect, the mapping of SNPs to the candidate genes
was varied, considering SNPs within either 1000 or 10
000 bp of the transcribed region of each candidate gene. As
presented in Supplementary Material, Tables S8–S11, the per-
formance of the algorithm applied to the 24 seed genes was
compared across all combinations of the three aspects by esti-
mating the overall fraction of true associations in the first rep-
lication meta-analysis as 12p0. Further, these estimated
fractions of true associations were compared with the distribu-
tion of the estimated fractions of true associations derived by
applying the algorithm to 24 genes chosen at random instead

of the seed genes over 50 iterations. A substantial effect on en-
richment for the estimated overall fraction of true associations
was observed when the number N of most related candidate
genes was varied: the algorithm was optimized as judged by a
minimum of p0 for the P-values in the first replication
meta-analysis when the top 25 genes were examined (Supple-
mentary Material, Tables S8–S11). Restricting candidate
genes in GRAIL to OMIM also substantially minimizedp0, pos-
sibly because the literature derived GRAIL metric may be more
informative for genes in OMIM rather than RefSeq genes in
general. There was little difference when SNPs within either
1000 bp or 10 000 bp of each candidate gene were examined.
When investigating the 25 most seed-gene-related OMIM
genes, examining SNPs within 1000 bp yielded a slightly
larger estimated number of true associations compared with
SNPs within 10 000 bp (Supplementary Material, Tables S8
and S10). For the main part of the paper, the results are therefore
presented based on the algorithm configured to investigate SNPs
within 1000 bp of the 25 candidate genes from OMIM most
related to the seed genes. The same configuration was used in ap-
plying the algorithm with the pairwise similarity metric derived
from GO instead of GRAIL.

Association analysis and statistical significance
for discovery and replication

In the WGHS, SNP associations with eGFR were performed
by linear regression assuming an additive relationship
between the number of inherited minor alleles of each SNP
and the natural logarithm of eGFR, adjusted for age.

In the first replication analysis of CKDGen cohorts excluding
the WGHS, cohort level association was performed within each
study for each SNP with the additive assumption applied to
either experimental genotype information or imputed genotype
information using dosage data, adjusting for age and sex.
Meta-analysis was performed by inverse variance weighing as-
suming fixed effects, applying genomic control both at the study
level and overall to offset potential inflation of the test statistic
due to incidental confounding (6). The value of the final
genomic control parameter l in the first meta-analysis was 1.09.

In the second replication analysis in the 18 external cohorts
only, significance of candidate associations was judged with
one-sided P-values based on the direction of association in
the discovery step. The FDR was applied to these P-values.

The thresholds for statistical significance at each step of the
procedure were as follows: Candidate SNPs were identified in
the WGHS (step 1) on the basis of gene-wide Bonferroni-
corrected P-values , 0.05. Candidate SNPs were further
advanced in the first replication step (overall second step)
with P , 0.05 and effect in same direction as WGHS. SNPs
were considered nominally replicated on the basis of an
FDR q-value , 0.05 (QVALUE software, (31)) as applied
to one-sided P-values from the second independent replica-
tion analysis. Genome-wide significance was specified as
P , 5 × 1028 in analysis combining all samples.

Power

Power for SNP associations was estimated assuming an addi-
tive relationship between the number of inherited alleles and
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mean log eGFR, using effect sizes estimated from the first rep-
lication meta-analysis to diminish the effect of the winner’s
curse.

Association of replicated SNPs with additional phenotypes

Associations with other renal phenotypes were examined in a
dataset derived from meta-analyses of SNP associations with
the urinary albumin-to-creatinine ratio (UACR) and MA
among 63 153 European ancestry participants from the
CDKGen Consortium (14).

Associations with coronary artery disease were examined in
a dataset derived from a meta-analysis of SNP associations in
a study of .22 000 cases and .64 000 controls of European
ancestry in the CARDIOGRAM Consortium (32). Associa-
tions with systolic and diastolic blood pressure were examined
in a dataset derived from meta-analyses of SNP associations in
a study of .69 000 individuals of European ancestry in the
ICBP Consortium (28). Associations with concentrations of
metabolites in urine were examined using the publicly avail-
able SNP associations published recently (15). LD for proxy
SNPs was estimated using SNAP (33) as applied to genotypes
in the HapMap (CEU population, r22) (34).

Expression SNP analysis

Published associations between gene transcript levels and the
genotype of nearby SNPs in cis for a wide spectrum of
tissue/cell types were interrogated to assess the potential of
the replicating candidate SNPs for eGFR to influence gene ex-
pression. The tissues and cell types with available data were:
fresh lymphocytes (35), fresh leukocytes (36), leukocyte
samples in individuals with celiac disease (37), lymphoblas-
toid cell lines (LCL) derived from asthmatic children (38),
HapMap LCL from three populations (39), a separate study
on HapMap CEU LCL (40), peripheral blood monocytes
(41,42), adipose (13,43) and blood samples (13), 2 studies
on brain cortex (41,44), three large studies of brain regions in-
cluding prefrontal cortex, visual cortex and cerebellum
(Emilsson, personal communication), liver (43,45), osteoblasts
(46), skin (47) and additional fibroblast, T cell and LCL
samples (48). For each tissue or cell type, the citation
describes the study-specific statistical criterion for establishing
significant SNP associations. Finally, we queried a database of
normal kidney cortex tissue samples from two patient cohorts
(49,50). The Affymetrix 6.0 genome-wide chip was used for
genotyping, and genotype calling was performed using Affy-
metrix’s GTC Software. To evaluate an association with the
expression of transcripts in cis, SNPs with call rates .90%
were related to the expression probes measured on the Affy-
metrix U133 set, using RefSeq annotation (Affymetrix build
a30). The P-values were computed using linear multivariable
regression in each cohort and then combined using Fisher’s
combined probability test (49). Pairwise linkage disequilib-
rium was obtained from SNAP (33) with the CEU HapMap
release 22 as the reference.

Programming

All programming was performed in R (51), including the FDR
estimation, which used the default settings from the R-package

QVALUE (31). Association testing in the WGHS was per-
formed with PLINK (52). Association testing in the replication
cohorts from both stages was performed as described in Sup-
plementary Material, Tables S4 and S6. Quality control of
GWAS result files was performed with GWAtoolbox (53).
Meta-analysis was performed with METAL (Release February
2010 (54)). Plots of locus-wide association were prepared with
LocusZoom (55).

SUPPLEMENTARY MATERIAL

Supplementary Material is available at HMG Online.
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