66 research outputs found

    Influence of Surface and Atmospheric Thermodynamic Properties on the Cloud Radiative Forcing and Radiative Energy Budget in the Arctic

    Get PDF
    The Arctic climate has changed significantly in the last decades, experiencing a dramatic loss of sea ice and stronger than global warming. The Arctic surface temperature and the growth or melt of sea ice is determined by the local surface energy budget. In this context, clouds are of essential importance as they strongly interact with the radiative fluxes and modulate the surface energy budget depending on their properties, the surface types, and atmospheric thermodynamics. For the quantification of changes in the radiative energy budget (REB) associated with the presence or absence of clouds, the concept of cloud radiative forcing (CRF) is commonly used. This concept is defined as the differences between the REB in cloudy and cloud-free conditions, two atmospheric states which can not be observed at the same location and time. Consequently, either radiative transfer simulations or observations in both states have to be related, both of which complicate the derivation of CRF. A review of available studies and their approaches to derive the CRF reveals conceptual differences as well as deficiencies in the handling of radiative processes related to the surface albedo. These findings call into question the current state of CRF assessment in the Arctic based on the few available studies, but also their comparability. By combining atmospheric radiative transfer simulations with a snow albedo model, two processes that control the surface albedo during the transition from cloud-free to cloudy conditions and their role in the derivation of CRF are discussed. The broadband surface albedo of snow surfaces typically increases in the presence of clouds due to a spectral weighting of downward irradiance toward shorter wavelengths. For more absorbing surface types such as white ice and melt ponds, which are common in summer, there is a strong shift between the albedo of direct and diffuse illuminated surface, which diminishes the surface albedo depending on the cloud optical thickness and solar zenith angle. In this thesis, a hypothesis on the impact of those surface-albedo--cloud interactions on the annual cycle of shortwave CRF is discussed, but an application to inner Arctic conditions remains an open issue. An improved method to derive the shortwave CRF is proposed and an application to two airborne campaigns in the marginal sea ice zone northwest of Svalbard (Norway) illustrates the role of surface-albedo--cloud interactions in the Arctic in spring and early summer. For the longwave CRF, conceptual differences and the general interpretation of the different CRF estimates are discussed and illustrated for a case study. Radiative transfer simulations of a rarely observed annual cycle of thermodynamic profiles in the inner Arctic are used to study both longwave CRF approaches and the impact of thermodynamic profiles on the longwave CRF. Making use of airborne low-level flights in the MIZ and other available datasets, common seasonal radiative states on sea ice and case studies of warm air intrusions and cold air outbreaks are illustrated. The CRF is analyzed as a function of the observed cloud/surface regime, which is extended by radiative transfer simulations characterizing the conditions in this region and seasons

    The bioliq process for producing synthetic transportation fuels

    Get PDF
    Biofuels of the second generation can contribute significantly to the replacement of the currently used fossil energy carriers for transportation fuel production. The lignocellulosic biomass residues used do not compete with food and feed production, but have to be collected from wide-spread areas for industrial largescale use. The two-stage gasification concept bioliq offers a solution to this problem. It aims at the conversion of low-grade residual biomass from agriculture and forestry into synthetic fuels and chemicals. Central element of the bioliq process development is the 2–5 MW pilot plant along the complete process chain: fast pyrolysis for pretreatment of biomass to obtain an energy dense, liquid intermediate fuel, high-pressure entrained flow gasification providing low methane synthesis gas free of tar, hot synthesis gas cleaning to separate acid gases, and contaminants as well as methanol/dimethyl ether and subsequent following gasoline synthesis. After construction and commissioning of the individual process steps with partners from industry, first production of synthetic fuel was successfully achieved in 2014. In addition to pilot plant operation for technology demonstration, a research and development network has been established providing the scientific basis for optimization and further development of the bioliq process as well as to explore new applications of the technologies and products involved

    Effects of variable, ice-ocean surface properties and air mass transformation on the Arctic radiative energy budget

    Get PDF
    Low-level airborne observations of the Arctic surface radiative energy budget are discussed. We focus on the terrestrial part of the budget, quantified by the thermal-infrared net irradiance (TNI). The data have been collected in cloudy and cloud-free conditions over and in the vicinity of the marginal sea ice zone (MIZ) close to Svalbard during two aircraft campaigns in spring of 2019 and in early summer of 2017. The measurements, complemented by ground-based observations available from the literature and radiative transfer simulations, are used to evaluate the influence of surface type (sea ice, open ocean, MIZ), seasonal characteristics, and synoptically driven meridional air mass transports into and out of the Arctic on the near-surface TNI. The analysis reveals a typical four-mode structure of the frequency distribution of the TNI as a function of surface albedo, sea ice fraction, and surface brightness temperature. Two modes prevail over sea ice and another two over open ocean, each representing cloud-free and cloudy radiative states. Characteristic shifts and modifications of the TNI modes during the transition from winter towards early spring and summer conditions are discussed. Furthermore, the influence of warm air intrusions (WAIs) and marine cold air outbreaks (MCAOs) on the near-surface downward thermal-infrared irradiances and the TNI is highlighted for several case studies. It is concluded that during WAIs the surface warming depends on cloud properties and evolution. Lifted clouds embedded in warmer air masses over a colder sea ice surface, decoupled from the ground by a surface-based temperature inversion, have the potential to warm the surface more strongly than near-surface fog or thin low-level boundary layer clouds, because of a higher cloud base temperature. For MCAOs it is found that the thermodynamic profile of the southward moving air mass adapts only slowly to the warmer ocean surface.</p

    Evolution of deep convective clouds derived from ground-based observations

    Get PDF
    Deep convective clouds (DCCs) play a crucial role in redistributing latent heat, hydrological cycle and in the radiative budget of our climate system. Therefore, their complex evolution processes are in focus of many studies. Changes in the structure of DCCs can delay the onset of precipitation and alter the albedo of clouds. Knowing where in the cloud and under what circumstances the cloud liquid water droplets start to freeze is an important step to improve climate and weather forecast models. The purpose of this planned study is to characterize the impact of aerosol and thermodynamic conditions on the cloud particle growth. Therefore, ground-based cloud side observation of the reflected solar spectral radiation (near infrared) using an imaging spectroradiometer and measurements of the emitted thermal radiation using an infrared camera will be combined. These measurements will be taken at the Amazon Tall Tower Observatory, in the Amazon forest, Brazil. Here, the campaign will be introduced.Hochreichend konvektive Bewölkung (deep convective clouds, DCCs) spielt eine entscheidende Rolle bei der Umverteilung latenter Wärme, sowie für den Wasserkreislauf und dem Strahlungshaushalt unseres Klimasystems. Aus diesem Grund stehen ihre komplexen Wolkenbildungsprozesse im Fokus vieler Untersuchungen. Veränderungen in der mikrophysikalischen Struktur der DCCs können das Einsetzen der Niederschlagsbildung verzögern. Darüber hinaus verändern sie die Albedo der Wolke. Das Wissen darüber, wo in der Wolke und unter welchen Umständen die Wolkentropfen beginnen zu gefrieren, ist ein wichtiger Schritt zur Verbesserung von Klima- und Wettervorhersagemodellen. Das Ziel der geplanten Untersuchungen besteht in der Charakterisierung des Einflusses von Aerosolpartikeln und thermodynamischer Bedingungen auf den Partikelwachstum und der Phasenumwandlung in Wolken. Hierzu werden bodengebundene Wolkenseitenbeobachtungen der reflektierten solaren Strahlung (nahes infrarot), aufgezeichnet mit Hilfe eines abbildenden Spektrometers, sowie Messungen der emittierten thermischen Strahlung, detektiert mit einer Infrarotkamera, kombiniert. Die entsprechenden Messungen werden am „Amazon Tall Tower Observatory“ im Amazonas Regenwald in Brasilien durchgeführt. Im folgendem wird die zugehörige Kampagne vorgestellt

    A comprehensive in situ and remote sensing data set from the Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) campaign

    Get PDF
    The Arctic CLoud Observations Using airborne measurements during polar Day (ACLOUD) cam- paign was carried out north-west of Svalbard (Norway) between 23 May and 6 June 2017. The objective of ACLOUD was to study Arctic boundary layer and mid-level clouds and their role in Arctic amplification. Two research aircraft (Polar 5 and 6) jointly performed 22 research flights over the transition zone between open ocean and closed sea ice. Both aircraft were equipped with identical instrumentation for measurements of basic meteorological parameters, as well as for turbulent and radiative energy fluxes. In addition, on Polar 5 active and passive remote sensing instruments were installed, while Polar 6 operated in situ instruments to characterize cloud and aerosol particles as well as trace gases. A detailed overview of the specifications, data processing, and data quality is provided here. It is shown that the scientific analysis of the ACLOUD data benefits from the coordinated operation of both aircraft. By combining the cloud remote sensing techniques operated on Polar 5, the synergy of multi-instrument cloud retrieval is illustrated. The remote sensing methods were validated us- ing truly collocated in situ and remote sensing observations. The data of identical instruments operated on both aircraft were merged to extend the spatial coverage of mean atmospheric quantities and turbulent and radiative flux measurement. Therefore, the data set of the ACLOUD campaign provides comprehensive in situ and remote sensing observations characterizing the cloudy Arctic atmosphere. All processed, calibrated, and validated data are published in the World Data Center PANGAEA as instrument-separated data subsets (Ehrlich et al., 2019b, https://doi.org/10.1594/PANGAEA.902603)

    Additive value of [18F]PI-2620 perfusion imaging in progressive supranuclear palsy and corticobasal syndrome

    Get PDF
    Purpose: Early after [18F]PI-2620 PET tracer administration, perfusion imaging has potential for regional assessment of neuronal injury in neurodegenerative diseases. This is while standard late-phase [18F]PI-2620 tau-PET is able to discriminate the 4-repeat tauopathies progressive supranuclear palsy and corticobasal syndrome (4RTs) from disease controls and healthy controls. Here, we investigated whether early-phase [18F]PI-2620 PET has an additive value for biomarker based evaluation of 4RTs. Methods: Seventy-eight patients with 4RTs (71 ± 7 years, 39 female), 79 patients with other neurodegenerative diseases (67 ± 12 years, 35 female) and twelve age-matched controls (69 ± 8 years, 8 female) underwent dynamic (0-60 min) [18F]PI-2620 PET imaging. Regional perfusion (0.5-2.5 min p.i.) and tau load (20-40 min p.i.) were measured in 246 predefined brain regions [standardized-uptake-value ratios (SUVr), cerebellar reference]. Regional SUVr were compared between 4RTs and controls by an ANOVA including false-discovery-rate (FDR, p < 0.01) correction. Hypoperfusion in resulting 4RT target regions was evaluated at the patient level in all patients (mean value - 2SD threshold). Additionally, perfusion and tau pattern expression levels were explored regarding their potential discriminatory value of 4RTs against other neurodegenerative disorders, including validation in an independent external dataset (n = 37), and correlated with clinical severity in 4RTs (PSP rating scale, MoCA, activities of daily living). Results: Patients with 4RTs had significant hypoperfusion in 21/246 brain regions, most dominant in thalamus, caudate nucleus, and anterior cingulate cortex, fitting to the topology of the 4RT disease spectrum. However, single region hypoperfusion was not specific regarding the discrimination of patients with 4RTs against patients with other neurodegenerative diseases. In contrast, perfusion pattern expression showed promise for discrimination of patients with 4RTs from other neurodegenerative diseases (AUC: 0.850). Discrimination by the combined perfusion-tau pattern expression (AUC: 0.903) exceeded that of the sole tau pattern expression (AUC: 0.864) and the discriminatory power of the combined perfusion-tau pattern expression was replicated in the external dataset (AUC: 0.917). Perfusion but not tau pattern expression was associated with PSP rating scale (R = 0.402; p = 0.0012) and activities of daily living (R = - 0.431; p = 0.0005). Conclusion: [18F]PI-2620 perfusion imaging mirrors known topology of regional hypoperfusion in 4RTs. Single region hypoperfusion is not specific for 4RTs, but perfusion pattern expression may provide an additive value for the discrimination of 4RTs from other neurodegenerative diseases and correlates closer with clinical severity than tau pattern expression

    MOSAiC-ACA and AFLUX - Arctic airborne campaigns characterizing the exit area of MOSAiC

    Get PDF
    Two airborne field campaigns focusing on observations of Arctic mixed-phase clouds and boundary layer processes and their role with respect to Arctic amplification have been carried out in spring 2019 and late summer 2020 over the Fram Strait northwest of Svalbard. The latter campaign was closely connected to the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition. Comprehensive data sets of the cloudy Arctic atmosphere have been collected by operating remote sensing instruments, insitu probes, instruments for the measurement of turbulent fluxes of energy and momentum, and dropsondes on board the AWI research aircraft Polar 5. In total, 24 flights with 111 flight hours have been performed over open ocean, the marginal sea ice zone, and sea ice. The data sets follow documented methods and quality assurance and are suited for studies on Arctic mixed-phase clouds and their transformation processes, for studies with a focus on Arctic boundary layer processes, and for satellite validation application

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements
    corecore