307 research outputs found

    Annexin A5 D226K structure and dynamics: identification of a molecular switch for the large-scale conformational change of domain III

    Get PDF
    AbstractThe domain III of annexin 5 undergoes a Ca2+- and a pH-dependent conformational transition of large amplitude. Modeling of the transition pathway by computer simulations suggested that the interactions between D226 and T229 in the IIID–IIIE loop on the one hand and the H-bond interactions between W187 and T224 on the other hand, are important in this process [Sopkova et al. (2000) Biochemistry 39, 14065–14074]. In agreement with the modeling, we demonstrate in this work that the D226K mutation behaves as a molecular switch of the pH- and Ca2+-mediated conformational transition. In contrast, the hydrogen bonds between W187 and T224 seem marginal

    First Synthesis of Racemic Trans Propargylamino-Donepezil, a Pleiotrope Agent Able to Both Inhibit AChE and MAO-B, with Potential Interest against Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is a multifactorial neurodegenerative disease towards which pleiotropic approach using Multi-Target Directed Ligands is nowadays recognized as probably convenient. Among the numerous targets which are today validated against AD, acetylcholinesterase (ACh) and Monoamine Oxidase-B (MAO-B) appear as particularly convincing, especially if displayed by a sole agent such as ladostigil, currently in clinical trial in AD. Considering these results, we wanted to take benefit of the structural analogy lying in donepezil (DPZ) and rasagiline, two indane derivatives marketed as AChE and MAO-B inhibitors, respectively, and to propose the synthesis and the preliminary in vitro biological characterization of a structural compromise between these two compounds, we called propargylaminodonepezil (PADPZ). The synthesis of racemic trans PADPZ was achieved and its biological evaluation established its inhibitory activities towards both (h)AChE (IC50 = 0.4 uM) and (h)MAO-B (IC50 = 6.4 uM)

    Conformation and dynamics of human urotensin II and urotensin related peptide in aqueous solution

    Get PDF
    Conformation and dynamics of the vasoconstrictive peptides human urotensin II (UII) and urotensin related peptide (URP) have been investigated by both unrestrained and enhanced-sampling molecular-dynamics (MD) simulations and NMR spectroscopy. These peptides are natural ligands of the G-protein coupled urotensin II receptor (UTR) and have been linked to mammalian pathophysiology. UII and URP cannot be characterized by a single structure but exist as an equilibrium of two main classes of ring conformations, <i>open</i> and <i>folded</i>, with rapidly interchanging subtypes. The <i>open</i> states are characterized by turns of various types centered at K<sup>8</sup>Y<sup>9</sup> or F<sup>6</sup>W<sup>7</sup> predominantly with no or only sparsely populated transannular hydrogen bonds. The <i>folded</i> conformations show multiple turns stabilized by highly populated transannular hydrogen bonds comprising centers F<sup>6</sup>W<sup>7</sup>K<sup>8</sup> or W<sup>7</sup>K<sup>8</sup>Y<sup>9</sup>. Some of these conformations have not been characterized previously. The equilibrium populations that are experimentally difficult to access were estimated by replica-exchange MD simulations and validated by comparison of experimental NMR data with chemical shifts calculated with density-functional theory. UII exhibits approximately 72% <i>open</i>:28% <i>folded</i> conformations in aqueous solution. URP shows very similar ring conformations as UII but differs in an <i>open:folded</i> equilibrium shifted further toward <i>open</i> conformations (86:14) possibly arising from the absence of folded N-terminal tail-ring interaction. The results suggest that the different biological effects of UII and URP are not caused by differences in ring conformations but rather by different interactions with UTR

    Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector

    Get PDF
    A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions

    Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √s = 13 TeV

    Get PDF
    The performance of the missing transverse momentum (EmissT) reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct EmissT, fully calibrated electrons, muons, photons, hadronically decaying τ -leptons, and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various EmissT contributions. The individual terms as well as the overall reconstructed EmissT are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the EmissT scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb−1

    Search for High-Mass Resonances Decaying to τν in pp Collisions at √s=13 TeV with the ATLAS Detector

    Get PDF
    A search for high-mass resonances decaying to τν using proton-proton collisions at √s=13 TeV produced by the Large Hadron Collider is presented. Only τ-lepton decays with hadrons in the final state are considered. The data were recorded with the ATLAS detector and correspond to an integrated luminosity of 36.1 fb−1. No statistically significant excess above the standard model expectation is observed; model-independent upper limits are set on the visible τν production cross section. Heavy W′ bosons with masses less than 3.7 TeV in the sequential standard model and masses less than 2.2–3.8 TeV depending on the coupling in the nonuniversal G(221) model are excluded at the 95% credibility level

    Operation and performance of the ATLAS Tile Calorimeter in Run 1

    Get PDF
    The Tile Calorimeter is the hadron calorimeter covering the central region of the ATLAS experiment at the Large Hadron Collider. Approximately 10,000 photomultipliers collect light from scintillating tiles acting as the active material sandwiched between slabs of steel absorber. This paper gives an overview of the calorimeter’s performance during the years 2008–2012 using cosmic-ray muon events and proton–proton collision data at centre-of-mass energies of 7 and 8TeV with a total integrated luminosity of nearly 30 fb−1. The signal reconstruction methods, calibration systems as well as the detector operation status are presented. The energy and time calibration methods performed excellently, resulting in good stability of the calorimeter response under varying conditions during the LHC Run 1. Finally, the Tile Calorimeter response to isolated muons and hadrons as well as to jets from proton–proton collisions is presented. The results demonstrate excellent performance in accord with specifications mentioned in the Technical Design Report

    Measurement of jet fragmentation in Pb+Pb and pp collisions at √s NN =5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of jet fragmentation functions in 0.49 nb −1 of Pb+Pb collisions and 25 pb −1 of pp collisions at √ sNN =5.02 TeV collected in 2015 with the ATLAS detector at the LHC. These measurements provide insight into the jet quenching process in the quark-gluon plasma created in the aftermath of ultra-relativistic collisions between two nuclei. The modifications to the jet fragmentation functions are quantified by dividing the measurements in Pb+Pb collisions by baseline measurements in pp collisions. This ratio is studied as a function of the transverse momentum of the jet, the jet rapidity, and the centrality of the collision. In both collision systems, the jet fragmentation functions are measured for jets with transverse momentum between 126 GeV and 398 GeV and with an absolute value of jet rapidity less than 2.1. An enhancement of particles carrying a small fraction of the jet momentum is observed, which increases with centrality and with increasing jet transverse momentum. Yields of particles carrying a very large fraction of the jet momentum are also observed to be enhanced. Between these two enhancements of the fragmentation functions a suppression of particles carrying an intermediate fraction of the jet momentum is observed in Pb+Pb collisions. A small dependence of the modifications on jet rapidity is observed

    Search for Higgs bosons produced via vector-boson fusion and decaying into bottom quark pairs in √s =13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the bb ¯ decay of the Standard Model Higgs boson produced through vector-boson fusion is presented. Three mutually exclusive channels are considered: two all-hadronic channels and a photon-associated channel. Results are reported from the analysis of up to 30.6 fb −1 of pp data at s √ =13 TeV collected with the ATLAS detector at the LHC. The measured signal strength relative to the Standard Model prediction from the combined analysis is 2.5 +1.4 −1.3 for inclusive Higgs boson production and 3.0 +1.7 −1.6 for vector-boson fusion production only
    corecore