84 research outputs found

    Chemical composition and phyto-chemical factors of sorrel seeds (Hibiscus sabdariffa L.) boiled at varying durations

    Get PDF
    This study was carried out to determine the chemical composition of sorrel seeds boiled at varying durations. Cleaned sorrel seeds were poured into three (3) litres of boiled water (at 100 C) per batch of 1kg (i.e. in ratio of 3:1) at different boiling durations of 0, 15, 30 and 45 minutes, respectively. The boiled sorrel seeds were sun dried by spreading on trays until well dried. Samples of the boiled sorrel seeds were analysed for chemical composition and phyto-chemical factors. The results showed that the duration of boiling significantly (p< 0.05) affected the crude protein, crude fibre and ether extract contents. Crude protein and ether extract values increased as the duration of boiling increased from 0 to 45 minutes. The lowest crude protein (28.00%) and crude fibre (12.80%) was obtained at 30 minutes duration of boiling while their respective values 29.22% and 14.50% were obtained from 45 minutes duration. Ether extract decreased with increased boiling duration. The values of anti – nutritional factor declined with increase in the duration boiling. There was also significant differences (p<0.05) in phytic acid and tannin levels. The 45 minutes duration of boiling had the lowest value for phytic acid (0.19%), tannin (1.1%) and saponin (7.65%). It is concluded that processing of sorrel seed by boiling enhanced nutrient availability of crude protein, crude fibre and ether extract, and reduced anti-nutrients (phytic acid, tannin and saponin) to a tolerable level. Keywords: Phyto-chemical factors; Boiling durations; Chemical composition; Sorrel seed

    Quantifying variability in maize yield response to nutrient applications in the northern Nigeria Savanna

    Get PDF
    Open Access JournalDiagnostic on-farm nutrient omission trials were conducted over two cropping seasons (2015 and 2016) to assess soil nutrients related constraints to maize yield in the northern Nigerian savanna agro-ecological zone and to quantify their variability. Two sets of trials were conducted side by side, one with an open pollinated maize variety (OPV) and the other one with a hybrid maize variety and each set had six equal treatments laid out in 198 farmers’ fields. The treatments comprised (i) a control, (ii) a PK (‘−N,’ without N), (iii) an NK (‘−P,’ without P), (iv) an NP (‘−K,’ without K), (v) an NPK and (vi) an NPK + S + Ca + Mg + Zn + B (‘+SMM,’ NPK plus secondary macro- and micro-nutrients). Moderate to a large variability in most soil characteristics was observed in the studied fields. Consequently, cluster analysis revealed three distinct yield-nutrient response classes common for the two types of maize varieties. These define classes were fields that have (i) no-response to any nutrient, (ii) a large response to N and P and (iii) a large response to N alone. Although overall yield performance of OPV and hybrid varieties was similar, a distinct fourth class was identified for the hybrid variety, (iv) fields with a large response to N and secondary macro- and micro-nutrients. The results indicate that the large variability in soil nutrients related constraints need to be accounted for to optimize maize yield in the northern Nigerian savanna. The development of field- and area-specific fertilizer recommendations is highly needed, using simple decision support tools that consider variable soil fertility conditions and yield responses as obtained from this study

    Implication of blanket NPK application on nutrient balance of maize based on soil and tissue diagnosis approaches in the savannas of northern Nigeria

    Get PDF
    Open Access JournalImproper nutrient management reduces the yield and affects the nutrient status of crops. This study aimed to diagnose the nutrients limitation in maize. A three-year multi-location (348 sites) nutrient experiments were conducted in randomized block design to analyse nutrients limitation for maize production under conventional fertilizer recommendation system in Nigeria using DRIS, and to identify soil factors that influence DRIS indices using random forest model. DRIS indices for nutrients were calculated from the results of ear leaf samples collected from the experimental plots. The DRIS indices were summed, and used to cluster plots using k-means cluster algorithm. The results show large differences in average yield between the clusters. The clusters also differed based on frequency with which nutrients are most limiting. B was the most limiting in cluster one and three, Mn in cluster two and K in cluster four. Random forest results show that soil pH, B and Mg had the largest influence on DRIS indices in cluster one. DRIS indices were most influenced by soil N and B in cluster two. To a lesser extent, the soil Fe, K, Mg and S contents also influenced DRIS indices in cluster two. Soil K, B and Zn were the most significant factors influencing the DRIS indices in cluster four. Bulk Density, Fe, Na, ECEC, and organic carbon had a moderate influence on the indices in this cluster. Nutrient limitation in plants can be diagnose using the DRIS. Soil properties have a definite influence on maize nutrient status

    Compositional nutrient diagnosis (CND) and associated yield predictions in maize: a case study in the northern Guinea savanna of Nigeria

    Get PDF
    Open Access Article; Published online: 17 Aug 2022Developing optimal strategies for nutrient management of soils and crops at a larger scale requires an understanding of nutrient limitations and imbalances. The availability of extensive data (n = 1,781) from 2-yr nutrient omission trials in the most suitable agroecological zone for maize (Zea mays L.) in Nigeria (i.e., the northern Guinea savanna) provides an opportunity to assess nutrient limitations and imbalances using the concept of multi-ratio compositional nutrient diagnosis (CND). We also compared and contrasted the use of linear regression models and bootstrap forest machine learning to predict maize yield based on nutrient concentration in ear leaves. The results showed that 35% of the experimental plots had low yields due to nutrient imbalances (hereafter referred to as low yield imbalanced [LYI]). These experimental plots were dominated by control plots (without any nutrients applied), plots without N fertilization, and plots without P fertilization. Using the control plot as the ultimate indicator of nutrient imbalance, the significantly limiting nutrients in order of decreasing frequency of deficiency were N, P, S, Ca > Cu, and B. Both linear regression and bootstrap forest machine learning models fairly predicted maize grain yield based on nutrient concentration in ear leaves only in the LYI group and when examining all data with an independent validation dataset. These results suggest that nutrient management strategies, especially through the site-specific management approach, should consider S, Ca, Cu, and B in addition to the existing nutrients N, P, and K to improve nutrient balance and maize yield in the study area

    Delineation of soil fertility management zones for site-specific nutrient management in the maize belt region of Nigeria

    Get PDF
    Open Access Journal; Published online: 29 Oct 2020Site-specific nutrient management can reduce soil degradation and crop production risks related to undesirable timing, amount, and type of fertilizer application. This study was conducted to understand the spatial variability of soil properties and delineate spatially homogenous nutrient management zones (MZs) in the maize belt region of Nigeria. Soil samples (n = 3387) were collected across the area using multistage and random sampling techniques, and samples were analyzed for pH, soil organic carbon (SOC), macronutrients (N, P, K, S, Ca and Mg), micronutrients (S, B, Zn, Mn and Fe) content, and effective cation exchange capacity (ECEC). Spatial distribution and variability of these parameters were assessed using geostatistics and ordinary kriging, while principal component analysis (PCA) and multivariate K-means cluster analysis were used to delineate nutrient management zones. Results show that spatial variation of macronutrients (total N, available P, and K) was largely influenced by intrinsic factors, while that of S, Ca, ECEC, and most micronutrients was influenced by both intrinsic and extrinsic factors with moderate to high spatial variability. Four distinct management zones, namely, MZ1, MZ2, MZ3, and MZ4, were identified and delineated in the area. MZ1 and MZ4 have the highest contents of most soil fertility indicators. MZ4 has a higher content of available P, Zn, and pH than MZ1. MZ2 and MZ3, which constitute the larger part of the area, have smaller contents of the soil fertility indicators. The delineated MZs offer a more feasible option for developing and implementing site-specific nutrient management in the maize belt region of Nigeria

    Bio-analytical Assay Methods used in Therapeutic Drug Monitoring of Antiretroviral Drugs-A Review

    Get PDF

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Measurement of the View the tt production cross-section using eμ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σtt¯) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σtt¯ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σtt¯ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions
    corecore