68 research outputs found

    Elastase activity on sputum neutrophils correlates with severity of lung disease in cystic fibrosis

    Get PDF
    Neutrophil elastase (NE) is a key risk factor for severity of cystic fibrosis (CF) lung disease. Recent studies identified increased NE activity on the surface of airway neutrophils from CF-like mice and patients with CF. However, the role of surface-bound NE in CF lung disease remains unknown. We determined the relationship between surface-bound NE activity and severity of lung disease in CF.Surface-bound NE activity was measured on sputum neutrophils from 35 CF patients and eight healthy controls using novel lipidated Förster resonance energy transfer reporters and correlated with free NE activity, neutrophil counts, interleukin-8, myeloperoxidase and antiproteases in sputum supernatant, and with lung function parameters.Surface-bound NE activity was increased in CF compared to healthy controls (p&lt;0.01) and correlated with free NE activity (p&lt;0.05) and other inflammation markers (p&lt;0.001). Surface-bound and free NE activity correlated with forced expiratory volume in 1 s % predicted (p&lt;0.01 and p&lt;0.05), but only surface-bound NE activity correlated with plethysmographic functional residual capacity % pred (p&lt;0.01) in patients with CF.We demonstrate that surface-bound NE activity on airway neutrophils correlates with severity of lung disease in patients with CF. Our results suggest that surface-bound NE activity may play an important role in the pathogenesis and serve as novel biomarker in CF lung disease.</jats:p

    Archaeometric evidence for the earliest exploitation of lignite from the bronze age Eastern Mediterranean

    Get PDF
    This paper presents the earliest evidence for the exploitation of lignite (brown coal) in Europe and sheds new light on the use of combustion fuel sources in the 2nd millennium BCE Eastern Mediterranean. We applied Thermal Desorption/Pyrolysis-Gas Chromatography-Mass Spectrometry and Polarizing Microscopy to the dental calculus of 67 individuals and we identified clear evidence for combustion markers embedded within this calculus. In contrast to the scant evidence for combustion markers within the calculus samples from Egypt, all other individuals show the inhalation of smoke from fires burning wood identified as Pinaceae, in addition to hardwood, such as oak and olive, and/ or dung. Importantly, individuals from the Palatial Period at the Mycenaean citadel of Tiryns and the Cretan harbour site of Chania also show the inhalation of fire-smoke from lignite, consistent with the chemical signature of sources in the northwestern Peloponnese and Western Crete respectively. This first evidence for lignite exploitation was likely connected to and at the same time enabled Late Bronze Age Aegean metal and pottery production, significantly by both male and female individuals

    Poly(A) binding protein, C-terminally truncated by the hepatitis A virus proteinase 3C, inhibits viral translation

    Get PDF
    Proteolytic cleavage of translation initiation factors is a means to interfere with mRNA circularization and to induce translation arrest during picornaviral replication or apoptosis. It was shown that the regulated cleavages of eukaryotic initiation factor (eIF) 4G and poly(A)-binding protein (PABP) by viral proteinases correlated with early and late arrest of host cap-dependent and viral internal ribosome entry site (IRES)-dependent translation, respectively. Here we show that in contrast to coxsackievirus, eIF4G is not a substrate of proteinase 3C of hepatitis A virus (HAV 3Cpro). However, PABP is cleaved by HAV 3Cpro in vitro and in vivo, separating the N-terminal RNA-binding domain (NTD) of PABP from the C-terminal protein-interaction domain. In vitro, NTD has a dominant negative effect on HAV IRES-dependent translation and an enhanced binding affinity to the RNA structural element pY1 in the 5â€Č nontranslated region of the HAV RNA that is essential for viral genome replication. The results point to a regulatory role of PABP cleavage in RNA template switching of viral translation to RNA synthesis

    Lipid-specific IgMs induce antiviral responses in the CNS: implications for progressive multifocal leukoencephalopathy in multiple sclerosis

    Get PDF
    Progressive multi-focal leukoencephalopathy (PML) is a potentially fatal encephalitis caused by JC polyomavirus (JCV). PML principally affects people with a compromised immune system, such as patients with multiple sclerosis (MS) receiving treatment with natalizumab. However, intrathecal synthesis of lipid-reactive IgM in MS patients is associated with a markedly lower incidence of natalizumab-associated PML compared to those without this antibody repertoire. Here we demonstrate that a subset of lipid-reactive human and murine IgMs induce a functional anti-viral response that inhibits replication of encephalitic Alpha and Orthobunyaviruses in multi-cellular central nervous system cultures. These lipid-specific IgMs trigger microglia to produce IFN-ÎČ in a cGAS-STING-dependent manner, which induces an IFN-α/ÎČ-receptor 1-dependent antiviral response in glia and neurons. These data identify lipid-reactive IgM as a mediator of anti-viral activity in the nervous system and provide a rational explanation why intrathecal synthesis of lipid-reactive IgM correlates with a reduced incidence of iatrogenic PML in MS

    Zika virus infection leads to demyelination and axonal injury in mature CNS cultures

    Get PDF
    Understanding how Zika virus (Flaviviridae; ZIKV) affects neural cells is paramount in comprehending pathologies associated with infection. Whilst the effects of ZIKV in neural development are well documented, impact on the adult nervous system remains obscure. Here, we investigated the effects of ZIKV infection in established mature myelinated central nervous system (CNS) cultures. Infection incurred damage to myelinated fibers, with ZIKV-positive cells appearing when myelin damage was first detected as well as axonal pathology, suggesting the latter was a consequence of oligodendroglia infection. Transcriptome analysis revealed host factors that were upregulated during ZIKV infection. One such factor, CCL5, was validated in vitro as inhibiting myelination. Transferred UV-inactivated media from infected cultures did not damage myelin and axons, suggesting that viral replication is necessary to induce the observed effects. These data show that ZIKV infection affects CNS cells even after myelination—which is critical for saltatory conduction and neuronal function—has taken place. Understanding the targets of this virus across developmental stages including the mature CNS, and the subsequent effects of infection of cell types, is necessary to understand effective time frames for therapeutic intervention

    Perinatal asphyxia: current status and approaches towards neuroprotective strategies, with focus on sentinel proteins

    Get PDF
    Delivery is a stressful and risky event menacing the newborn. The mother-dependent respiration has to be replaced by autonomous pulmonary breathing immediately after delivery. If delayed, it may lead to deficient oxygen supply compromising survival and development of the central nervous system. Lack of oxygen availability gives rise to depletion of NAD+ tissue stores, decrease of ATP formation, weakening of the electron transport pump and anaerobic metabolism and acidosis, leading necessarily to death if oxygenation is not promptly re-established. Re-oxygenation triggers a cascade of compensatory biochemical events to restore function, which may be accompanied by improper homeostasis and oxidative stress. Consequences may be incomplete recovery, or excess reactions that worsen the biological outcome by disturbed metabolism and/or imbalance produced by over-expression of alternative metabolic pathways. Perinatal asphyxia has been associated with severe neurological and psychiatric sequelae with delayed clinical onset. No specific treatments have yet been established. In the clinical setting, after resuscitation of an infant with birth asphyxia, the emphasis is on supportive therapy. Several interventions have been proposed to attenuate secondary neuronal injuries elicited by asphyxia, including hypothermia. Although promising, the clinical efficacy of hypothermia has not been fully demonstrated. It is evident that new approaches are warranted. The purpose of this review is to discuss the concept of sentinel proteins as targets for neuroprotection. Several sentinel proteins have been described to protect the integrity of the genome (e.g. PARP-1; XRCC1; DNA ligase IIIα; DNA polymerase ÎČ, ERCC2, DNA-dependent protein kinases). They act by eliciting metabolic cascades leading to (i) activation of cell survival and neurotrophic pathways; (ii) early and delayed programmed cell death, and (iii) promotion of cell proliferation, differentiation, neuritogenesis and synaptogenesis. It is proposed that sentinel proteins can be used as markers for characterising long-term effects of perinatal asphyxia, and as targets for novel therapeutic development and innovative strategies for neonatal care

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals &lt;1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data
    • 

    corecore