246 research outputs found

    Ectoproct and entoproct type material: Reexamination of species from New England and Bermuda named by A. E. Verrill, J. W. Dawson and E. Desor

    Get PDF
    A. E. Verrill, J. W. Dawson, and E. Desor named 23 species of North American east coast ectoprocts and entoprocts prior to 1902. Chiefly from lack of illustration, the majority of these have been misunderstood in the literature. We have found material leading to a better understanding of 15 of these species in collections of the Peabody Museum of Natural History, Yale University, the U.S. National Museum, and the American Museum of Natural History. The following ectoproct species are described (original names): Amathia goodei Verrill, Bugula cucullata Verrill, Bugula decorata Verrill, Bugula flexilis Verrill, Bugula (Caulibugula) armata Verrill, Bugulella fragilis Verrill, Cellularia turrita Desor, Discopora nitida Verrill, Escharina porosa Verrill, Gemellaria willisii Dawson, Hippoporina verrilli Maturo and Schopf, Hippothoa expansa Dawson, Lepralia americana Verrill, Lepralia plana Dawson, Porellina stellata Verrill. One entoproct, Barentsia timida Verrill, is described. The coefficient of variation was determined for standard dimensional features. Data collected support Cheetham\u27s statistical verification that the most useful dimensional features for taxonomic purposes are ovicell length and width, zooid length, and primary orifice length and width. Length of adventitous avicularia and zooid width are the most variable of the traits measured, particularly in encrusting forms which also have extensive secondary calcification

    Controlling cyanobacterial harmful blooms in freshwater ecosystems

    Get PDF
    Cyanobacteria's long evolutionary history has enabled them to adapt to geochemical and climatic changes, and more recent human and climatic modifications of aquatic ecosystems, including nutrient over-enrichment, hydrologic modifications, and global warming. Harmful (toxic, hypoxia-generating, food web altering) cyanobacterial bloom (CyanoHAB) genera are controlled by the synergistic effects of nutrient (nitrogen and phosphorus) supplies, light, temperature, water residence/flushing times, and biotic interactions. Accordingly, mitigation strategies are focused on manipulating these dynamic factors. Strategies based on physical, chemical (algaecide) and biological manipulations can be effective in reducing CyanoHABs. However, these strategies should invariably be accompanied by nutrient (both nitrogen and phosphorus in most cases) input reductions to ensure long-term success and sustainability. While the applicability and feasibility of various controls and management approaches is focused on freshwater ecosystems, they will also be applicable to estuarine and coastal ecosystems. In order to ensure long-term control of CyanoHABs, these strategies should be adaptive to climatic variability and change, because nutrient-CyanoHAB thresholds will likely be altered in a climatically more-extreme world

    Panspermia, Past and Present: Astrophysical and Biophysical Conditions for the Dissemination of Life in Space

    Full text link
    Astronomically, there are viable mechanisms for distributing organic material throughout the Milky Way. Biologically, the destructive effects of ultraviolet light and cosmic rays means that the majority of organisms arrive broken and dead on a new world. The likelihood of conventional forms of panspermia must therefore be considered low. However, the information content of dam-aged biological molecules might serve to seed new life (necropanspermia).Comment: Accepted for publication in Space Science Review

    The performance of the jet trigger for the ATLAS detector during 2011 data taking

    Get PDF
    The performance of the jet trigger for the ATLAS detector at the LHC during the 2011 data taking period is described. During 2011 the LHC provided proton–proton collisions with a centre-of-mass energy of 7 TeV and heavy ion collisions with a 2.76 TeV per nucleon–nucleon collision energy. The ATLAS trigger is a three level system designed to reduce the rate of events from the 40 MHz nominal maximum bunch crossing rate to the approximate 400 Hz which can be written to offline storage. The ATLAS jet trigger is the primary means for the online selection of events containing jets. Events are accepted by the trigger if they contain one or more jets above some transverse energy threshold. During 2011 data taking the jet trigger was fully efficient for jets with transverse energy above 25 GeV for triggers seeded randomly at Level 1. For triggers which require a jet to be identified at each of the three trigger levels, full efficiency is reached for offline jets with transverse energy above 60 GeV. Jets reconstructed in the final trigger level and corresponding to offline jets with transverse energy greater than 60 GeV, are reconstructed with a resolution in transverse energy with respect to offline jets, of better than 4 % in the central region and better than 2.5 % in the forward direction

    Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    This paper describes a measurement of the inclusive top quark pair production cross-section (σttÂŻ) with a data sample of 3.2 fb−1 of proton–proton collisions at a centre-of-mass energy of √s = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electron–muon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously σttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be: σttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb, where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented

    Search for strong gravity in multijet final states produced in pp collisions at √s=13 TeV using the ATLAS detector at the LHC

    Get PDF
    A search is conducted for new physics in multijet final states using 3.6 inverse femtobarns of data from proton-proton collisions at √s = 13TeV taken at the CERN Large Hadron Collider with the ATLAS detector. Events are selected containing at least three jets with scalar sum of jet transverse momenta (HT) greater than 1TeV. No excess is seen at large HT and limits are presented on new physics: models which produce final states containing at least three jets and having cross sections larger than 1.6 fb with HT > 5.8 TeV are excluded. Limits are also given in terms of new physics models of strong gravity that hypothesize additional space-time dimensions

    Search for TeV-scale gravity signatures in high-mass final states with leptons and jets with the ATLAS detector at sqrt [ s ] = 13TeV

    Get PDF
    A search for physics beyond the Standard Model, in final states with at least one high transverse momentum charged lepton (electron or muon) and two additional high transverse momentum leptons or jets, is performed using 3.2 fb−1 of proton–proton collision data recorded by the ATLAS detector at the Large Hadron Collider in 2015 at √s = 13 TeV. The upper end of the distribution of the scalar sum of the transverse momenta of leptons and jets is sensitive to the production of high-mass objects. No excess of events beyond Standard Model predictions is observed. Exclusion limits are set for models of microscopic black holes with two to six extra dimensions

    Search for dark matter produced in association with a hadronically decaying vector boson in pp collisions at sqrt (s) = 13 TeV with the ATLAS detector

    Get PDF
    A search is presented for dark matter produced in association with a hadronically decaying W or Z boson using 3.2 fb−1 of pp collisions at View the MathML sources=13 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with a hadronic jet compatible with a W or Z boson and with large missing transverse momentum are analysed. The data are consistent with the Standard Model predictions and are interpreted in terms of both an effective field theory and a simplified model containing dark matter

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    Search for resonances in the mass distribution of jet pairs with one or two jets identified as b-jets in proton–proton collisions at √s=13TeV with the ATLAS detector

    Get PDF
    Searches for high-mass resonances in the dijet invariant mass spectrum with one or two jets identi-fied as b-jets are performed using an integrated luminosity of 3.2fb−1of proton–proton collisions with a centre-of-mass energy of √s=13TeVrecorded by the ATLAS detector at the Large Hadron Collider. Noevidence of anomalous phenomena is observed in the data, which are used to exclude, at 95%credibility level, excited b∗quarks with masses from 1.1TeVto 2.1TeVand leptophobic Z bosons with masses from 1.1TeVto 1.5TeV. Contributions of a Gaussian signal shape with effective cross sections ranging from approximately 0.4 to 0.001pb are also excluded in the mass range 1.5–5.0TeV
    • 

    corecore