12 research outputs found

    Early Quintessence in Light of theWilkinson Microwave Anisotropy Probe

    Get PDF
    We examine the cosmic microwave background (CMB) anisotropy for signatures of early quintessence dark energy—a nonnegligible quintessence energy density during the recombination and structure formation eras. Only very recently does the quintessence overtake the dark matter and push the expansion into overdrive. Because the presence of early quintessence exerts an influence on the clustering of dark matter and the baryon-photon fluid, we may expect to find trace signals in the CMB and the mass fluctuation power spectrum. In detail, we demonstrate that suppressed clustering power on small length scales, as suggested by the combined Wilkinson Microwave Anisotropy Probe/CMB/large-scale structure data set, is characteristic of early quintessence. We identify a set of concordant models and map out directions for further investigation of early quintessence

    Measurement of the inclusive cross-section for the production of jets in association with a Z boson in proton-proton collisions at 8 TeV using the ATLAS detector

    Get PDF
    The inclusive cross-section for jet production in association with a Z boson decaying into an electron–positron pair is measured as a function of the transverse momentum and the absolute rapidity of jets using 19.9 fb −1 of s√=8 TeV proton–proton collision data collected with the ATLAS detector at the Large Hadron Collider. The measured Z + jets cross-section is unfolded to the particle level. The cross-section is compared with state-of-the-art Standard Model calculations, including the next-to-leading-order and next-to-next-to-leading-order perturbative QCD calculations, corrected for non-perturbative and QED radiation effects. The results of the measurements cover final-state jets with transverse momenta up to 1 TeV, and show good agreement with fixed-order calculations

    Dijet azimuthal correlations and conditional yields in pp and p plus Pb collisions at √{S}^NN=5.02 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton (pp) and proton-lead (p + Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb^{-1} of pp data and 360 mp^{-1} of p + Pb data, both at {S}^NN=5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the Large Hadron Collider. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between -4.0 and 4.0 using the two highest transverse-momentum jets in each event, with the highest transverse-momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in p + Pb compared to pp collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in p + Pb collisions to those in pp collisions is suppressed by approximately 20%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets

    Weyl's Relation on a Doubly Connected Space and the Aharonov-Bohm

    Get PDF
    This paper presents the extended results of measurements of (WW +/-)-W-+/- jj production and limits on anomalous quartic gauge couplings using 20.3 fb(-1) of proton-proton collision data at root s = 8 TeV recorded by the ATLAS detector at the Large Hadron Collider. Events with two leptons (e or mu) with the same electric charge and at least two jets are analyzed. Production cross sections are determined in two fiducial regions, with different sensitivities to the electroweak and strong production mechanisms. An additional fiducial region, particularly sensitive to anomalous quartic gauge coupling parameters alpha 4 and alpha 5, is introduced, which allows more stringent limits on these parameters compared to the previous ATLAS measurement

    Measurement of distributions sensitive to the underlying event in inclusive Z boson production in pp collisions at root s=13 TeV with the ATLAS detector

    No full text

    Measurement of top quark pair differential cross-sections in the dilepton channel in pppp collisions at s√s = 7 and 8 TeV with ATLAS

    Get PDF
    See paper for full list of authors - 33 pages plus author list (50 pages total), 11 figures, 10 tables, submitted to Phys. Rev. D, all figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/TOPQ-2015-07/Measurements of normalized differential cross-sections of top quark pair (ttˉt\bar t) production are presented as a function of the mass, the transverse momentum and the rapidity of the ttˉt\bar t system in proton-proton collisions at center-of-mass energies of s\sqrt{s} = 7 TeV and 8 TeV. The dataset corresponds to an integrated luminosity of 4.6 fb1^{-1} at 7 TeV and 20.2 fb1^{-1} at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a bb-hadron. The measured distributions are corrected for detector effects and selection efficiency to cross-sections at the parton level. The differential cross-sections are compared with different Monte Carlo generators and theoretical calculations of ttˉt\bar t production. The results are consistent with the majority of predictions in a wide kinematic range

    Measurement of top quark pair differential cross sections in the dilepton channel in pp collisions at root s=7 and 8 TeV with ATLAS

    No full text
    Measurements of normalized differential cross sections of top quark pair (t (t) over bar) production are presented as a function of the mass, the transverse momentum and the rapidity of the t (t) over bar system in proton-proton collisions at center-of-mass energies of root s = 7 and 8 TeV. The data set corresponds to an integrated luminosity of 4.6 fb(-1) at 7 TeV and 20.2 fb(-1) at 8 TeV, recorded with the ATLAS detector at the Large Hadron Collider. Events with top quark pair signatures are selected in the dilepton final state, requiring exactly two charged leptons and at least two jets with at least one of the jets identified as likely to contain a b hadron. The measured distributions are corrected for detector effects and selection efficiency to cross sections at the parton level. The differential cross sections are compared with different Monte Carlo generators and theoretical calculations of t (t) over bar production. The results are consistent with the majority of predictions in a wide kinematic range

    Measurements of top-quark pair differential and double-differential cross-sections in the l plus jets channel with pp collisions at root s=13 TeV using the ATLAS detector

    No full text

    Study of heavy-flavor quarks produced in association with top-quark pairs at root s=7 TeV using the ATLAS detector

    Get PDF
    Contains fulltext : 127840.pdf (preprint version ) (Open Access

    Resolution of the ATLAS muon spectrometer monitored drift tubes in LHC Run 2

    Get PDF
    The momentum measurement capability of the ATLAS muon spectrometer relies fundamentally on the intrinsic single-hit spatial resolution of the monitored drift tube precision tracking chambers. Optimal resolution is achieved with a dedicated calibration program that addresses the specific operating conditions of the 354 000 high-pressure drift tubes in the spectrometer. The calibrations consist of a set of timing offsets and drift time to drift distance transfer relations, and result in chamber resolution functions. This paper describes novel algorithms to obtain precision calibrations from data collected by ATLAS in LHC Run 2 and from a gas monitoring chamber, deployed in a dedicated gas facility. The algorithm output consists of a pair of correction constants per chamber which are applied to baseline calibrations, and determined to be valid for the entire ATLAS Run 2. The final single-hit spatial resolution, averaged over 1172 monitored drift tube chambers, is 81.7 ± 2.2 μm
    corecore