887 research outputs found

    Numerical Simulation of Bolide Entry with Ground Footprint Prediction

    Get PDF
    As they decelerate through the atmosphere, meteors deposit mass, momentum and energy into the surrounding air at tremendous rates. Trauma from the entry of such bolides produces strong blast waves that can propagate hundreds of kilometers and cause substantial terrestrial damage even when no ground impact occurs. We present a new simulation technique for airburst blast prediction using a fully-conservative, Cartesian mesh, finite-volume solver and investigate the ability of this method to model far- field propagation over hundreds of kilometers. The work develops mathematical models for the deposition of mass, momentum and energy into the atmosphere and presents verification and validation through canonical problems and the comparison of surface overpressures, and blast arrival times with actual results in the literature for known bolides. The discussion also examines the effects of various approximations to the physics of bolide entry that can substantially decrease the computational expense of these simulations. We present parametric studies to quantify the influence of entry-angle, burst-height and other parameters on the ground footprint of the airburst, and these values are related to predictions from analytic and handbook-methods

    Revisiting Salvucci’s Semi-analytical Solution for Bare Soil Evaporation with New Consideration of Vapour Diffusion and Film Flow

    Get PDF
    Bare soil evaporation is controlled by a combination of capillary flow, vapour diffusion and film flow. Relevant analytical solutions mostly assume horizontal flow conditions and ignore gravitational effects. Salvucci (1997) provided a rare example of a semi-analytical solution for vertical bare soil evaporation. However, they did not explicitly represent vapour diffusion and film flow, which are likely to account for a significant proportion of total flow during vertical evaporation from soils. Vapour diffusion and film flow can be incorporated via Salvucci’s desorptivity parameter, which represents the proportionality constant relating Stage 2 cumulative evaporation to the square root of time under horizontal flow conditions. The objective of this article is to implement vapour diffusion and film flow within Salvucci’s semi-analytical solution and test its performance by comparison with isothermal numerical simulation and relevant experimental data. The following important conclusions are drawn. Analytical solutions that assume horizontal flow conditions are inadequate for understanding vertical evaporation problems because they overestimate evaporation rates and mostly predict vapour diffusion and film flow to be of negligible influence. Salvucci’s semi-analytical solution is effective at predicting the order-of-magnitude reduction in evaporation caused by gravitational effects. However, it is unable to identify the correct importance of vapour diffusion and film flow because these processes can only be represented through its desorptivity parameter

    Human subcortical brain asymmetries in 15,847 people worldwide reveal effects of age and sex

    Get PDF
    The two hemispheres of the human brain differ functionally and structurally. Despite over a century of research, the extent to which brain asymmetry is influenced by sex, handedness, age, and genetic factors is still controversial. Here we present the largest ever analysis of subcortical brain asymmetries, in a harmonized multi-site study using meta-analysis methods. Volumetric asymmetry of seven subcortical structures was assessed in 15,847 MRI scans from 52 datasets worldwide. There were sex differences in the asymmetry of the globus pallidus and putamen. Heritability estimates, derived from 1170 subjects belonging to 71 extended pedigrees, revealed that additive genetic factors influenced the asymmetry of these two structures and that of the hippocampus and thalamus. Handedness had no detectable effect on subcortical asymmetries, even in this unprecedented sample size, but the asymmetry of the putamen varied with age. Genetic drivers of asymmetry in the hippocampus, thalamus and basal ganglia may affect variability in human cognition, including susceptibility to psychiatric disorders

    Genetic Overlap Profiles of Cognitive Ability in Psychotic and Affective Illnesses: A Multisite Study of Multiplex Pedigrees

    Get PDF
    Background: Cognitive impairment is a key feature of psychiatric illness, making cognition an important tool for exploring of the genetics of illness risk. It remains unclear which measures should be prioritized in pleiotropy-guided research. Here, we generate profiles of genetic overlap between psychotic and affective disorders and cognitive measures in Caucasian and Hispanic groups. Methods: Data were from 4 samples of extended pedigrees (N = 3046). Coefficient of relationship analyses were used to estimate genetic overlap between illness risk and cognitive ability. Results were meta-analyzed. Results: Psychosis was characterized by cognitive impairments on all measures with a generalized profile of genetic overlap. General cognitive ability shared greatest genetic overlap with psychosis risk (average endophenotype ranking value [ERV] across samples from a random-effects meta-analysis = 0.32), followed by verbal memory (ERV = 0.24), executive function (ERV = 0.22), and working memory (ERV = 0.21). For bipolar disorder, there was genetic overlap with processing speed (ERV = 0.05) and verbal memory (ERV = 0.11), but these were confined to select samples. Major depressive disorder was characterized by enhanced working and face memory performance, as reflected in significant genetic overlap in 2 samples. Conclusions: There is substantial genetic overlap between risk for psychosis and a range of cognitive abilities (including general intelligence). Most of these effects are largely stable across of ascertainment strategy and ethnicity. Genetic overlap between affective disorders and cognition, on the other hand, tends to be specific to ascertainment strategy, ethnicity, and cognitive test battery

    The reliability and heritability of cortical folds and their genetic correlations across hemispheres

    Get PDF
    Cortical folds help drive the parcellation of the human cortex into functionally specific regions. Variations in the length, depth, width, and surface area of these sulcal landmarks have been associated with disease, and may be genetically mediated. Before estimating the heritability of sulcal variation, the extent to which these metrics can be reliably extracted from in-vivo MRI must be established. Using four independent test-retest datasets, we found high reliability across the brain (intraclass correlation interquartile range: 0.65–0.85). Heritability estimates were derived for three family-based cohorts using variance components analysis and pooled (total N \u3e 3000); the overall sulcal heritability pattern was correlated to that derived for a large population cohort (N \u3e 9000) calculated using genomic complex trait analysis. Overall, sulcal width was the most heritable metric, and earlier forming sulci showed higher heritability. The inter-hemispheric genetic correlations were high, yet select sulci showed incomplete pleiotropy, suggesting hemisphere-specific genetic influences

    Deficits in visual working-memory capacity and general cognition in African Americans with psychosis

    Get PDF
    On average, patients with psychosis perform worse than controls on visual change-detection tasks, implying that psychosis is associated with reduced capacity of visual working memory (WM). In the present study, 79 patients diagnosed with various psychotic disorders and 166 controls, all African Americans, completed a change-detection task and several other neurocognitive measures. The aims of the study were to (1) determine whether we could observe a between-group difference in performance on the change-detection task in this sample; (2) establish whether such a difference could be specifically attributed to reduced WM capacity (k); and (3) estimate k in the context of the general cognitive deficit in psychosis. Consistent with previous studies, patients performed worse than controls on the change-detection task, on average. Bayesian hierarchical cognitive modeling of the data suggested that this between-group difference was driven by reduced k in patients, rather than differences in other psychologically meaningful model parameters (guessing behavior and lapse rate). Using the same modeling framework, we estimated the effect of psychosis on k while controlling for general intellectual ability (g, obtained from the other neurocognitive measures). The results suggested that reduced k in patients was stronger than predicted by the between-group difference in g. Moreover, a mediation analysis suggested that the relationship between psychosis and g (i.e., the general cognitive deficit) was mediated by k. The results were consistent with the idea that reduced k is a specific deficit in psychosis, which contributes to the general cognitive deficit

    Impacts of the Tropical Pacific/Indian Oceans on the Seasonal Cycle of the West African Monsoon

    Get PDF
    The current consensus is that drought has developed in the Sahel during the second half of the twentieth century as a result of remote effects of oceanic anomalies amplified by local land–atmosphere interactions. This paper focuses on the impacts of oceanic anomalies upon West African climate and specifically aims to identify those from SST anomalies in the Pacific/Indian Oceans during spring and summer seasons, when they were significant. Idealized sensitivity experiments are performed with four atmospheric general circulation models (AGCMs). The prescribed SST patterns used in the AGCMs are based on the leading mode of covariability between SST anomalies over the Pacific/Indian Oceans and summer rainfall over West Africa. The results show that such oceanic anomalies in the Pacific/Indian Ocean lead to a northward shift of an anomalous dry belt from the Gulf of Guinea to the Sahel as the season advances. In the Sahel, the magnitude of rainfall anomalies is comparable to that obtained by other authors using SST anomalies confined to the proximity of the Atlantic Ocean. The mechanism connecting the Pacific/Indian SST anomalies with West African rainfall has a strong seasonal cycle. In spring (May and June), anomalous subsidence develops over both the Maritime Continent and the equatorial Atlantic in response to the enhanced equatorial heating. Precipitation increases over continental West Africa in association with stronger zonal convergence of moisture. In addition, precipitation decreases over the Gulf of Guinea. During the monsoon peak (July and August), the SST anomalies move westward over the equatorial Pacific and the two regions where subsidence occurred earlier in the seasons merge over West Africa. The monsoon weakens and rainfall decreases over the Sahel, especially in August.Peer reviewe

    Severe early onset preeclampsia: short and long term clinical, psychosocial and biochemical aspects

    Get PDF
    Preeclampsia is a pregnancy specific disorder commonly defined as de novo hypertension and proteinuria after 20 weeks gestational age. It occurs in approximately 3-5% of pregnancies and it is still a major cause of both foetal and maternal morbidity and mortality worldwide1. As extensive research has not yet elucidated the aetiology of preeclampsia, there are no rational preventive or therapeutic interventions available. The only rational treatment is delivery, which benefits the mother but is not in the interest of the foetus, if remote from term. Early onset preeclampsia (<32 weeks’ gestational age) occurs in less than 1% of pregnancies. It is, however often associated with maternal morbidity as the risk of progression to severe maternal disease is inversely related with gestational age at onset2. Resulting prematurity is therefore the main cause of neonatal mortality and morbidity in patients with severe preeclampsia3. Although the discussion is ongoing, perinatal survival is suggested to be increased in patients with preterm preeclampsia by expectant, non-interventional management. This temporising treatment option to lengthen pregnancy includes the use of antihypertensive medication to control hypertension, magnesium sulphate to prevent eclampsia and corticosteroids to enhance foetal lung maturity4. With optimal maternal haemodynamic status and reassuring foetal condition this results on average in an extension of 2 weeks. Prolongation of these pregnancies is a great challenge for clinicians to balance between potential maternal risks on one the eve hand and possible foetal benefits on the other. Clinical controversies regarding prolongation of preterm preeclamptic pregnancies still exist – also taking into account that preeclampsia is the leading cause of maternal mortality in the Netherlands5 - a debate which is even more pronounced in very preterm pregnancies with questionable foetal viability6-9. Do maternal risks of prolongation of these very early pregnancies outweigh the chances of neonatal survival? Counselling of women with very early onset preeclampsia not only comprises of knowledge of the outcome of those particular pregnancies, but also knowledge of outcomes of future pregnancies of these women is of major clinical importance. This thesis opens with a review of the literature on identifiable risk factors of preeclampsia
    corecore