101 research outputs found

    CD8+ T Cells from Human Neonates Are Biased toward an Innate Immune Response

    Get PDF
    To better understand why human neonates show a poor response to intracellular pathogens, we compared gene expression and histone modification profiles of neonatal naive CD8+ T cells with that of their adult counterparts. We found that neonatal lymphocytes have a distinct epigenomic landscape associated with a lower expression of genes involved in T cell receptor (TCR) signaling and cytotoxicity and a higher expression of genes involved in the cell cycle and innate immunity. Functional studies corroborated that neonatal CD8+ T cells are less cytotoxic, transcribe antimicrobial peptides, and produce reactive oxygen species. Altogether, our results show that neonatal CD8+ T cells have a specific genetic program biased toward the innate immune response. These findings will contribute to better diagnosis and management of the neonatal immune response.This project was specifically supported by a joint EcosNord-Anuies-SEP-Con-acyt project (M11S01). Work in the M.A.S. laboratory is supported by grantsfrom Consejo Nacional de Ciencia y Tecnologı ́a(CONACYT; CB-2011-01168182) and Programa de Mejoramiento del Profesorado (PROMEPSI-UAEM/13/342). Work in the S.S. laboratory is supported by recurrent fundingfrom the Inserm and Aix-Marseille University and by specific grants from theEuropean Union’s FP7 Program (agreement 282510-BLUEPRINT), the Associ-ation pour la Recherche contre le Cancer (ARC) (project SFI20111203756), andthe Aix-Marseille initiative d’excelence (A*MIDEX) project ANR-11-IDEX-0001-02. We thank Centro Estatal de la Transfusio ́n Sanguı ́nea in Cuernavaca for thedonation of leukocyte concentrates and the mothers and babies of HospitalGeneral Parres in Cuernavaca for the donation of cord blood. This study makesuse of data generated by the Blueprint and Roadmap consortia. A full list of theinvestigators who contributed to the generation of the data is availablefromwww.blueprint-epigenome.euandhttp://www.roadmapepigenomics.org/. Funding for the Blueprint project was provided by the European Union’sSeventh Framework Program (FP7/2007-2013) under grant agreement282510 – BLUEPRINT. The Roadmap consortium is financed by the NIH. Weare grateful to Professor C.I. Pogson for critical reading of the manuscript.S

    Search for dark matter produced in association with bottom or top quarks in √s = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for weakly interacting massive particle dark matter produced in association with bottom or top quarks is presented. Final states containing third-generation quarks and miss- ing transverse momentum are considered. The analysis uses 36.1 fb−1 of proton–proton collision data recorded by the ATLAS experiment at √s = 13 TeV in 2015 and 2016. No significant excess of events above the estimated backgrounds is observed. The results are in- terpreted in the framework of simplified models of spin-0 dark-matter mediators. For colour- neutral spin-0 mediators produced in association with top quarks and decaying into a pair of dark-matter particles, mediator masses below 50 GeV are excluded assuming a dark-matter candidate mass of 1 GeV and unitary couplings. For scalar and pseudoscalar mediators produced in association with bottom quarks, the search sets limits on the production cross- section of 300 times the predicted rate for mediators with masses between 10 and 50 GeV and assuming a dark-matter mass of 1 GeV and unitary coupling. Constraints on colour- charged scalar simplified models are also presented. Assuming a dark-matter particle mass of 35 GeV, mediator particles with mass below 1.1 TeV are excluded for couplings yielding a dark-matter relic density consistent with measurements

    Identification of genetic variants associated with Huntington's disease progression: a genome-wide association study

    Get PDF
    Background Huntington's disease is caused by a CAG repeat expansion in the huntingtin gene, HTT. Age at onset has been used as a quantitative phenotype in genetic analysis looking for Huntington's disease modifiers, but is hard to define and not always available. Therefore, we aimed to generate a novel measure of disease progression and to identify genetic markers associated with this progression measure. Methods We generated a progression score on the basis of principal component analysis of prospectively acquired longitudinal changes in motor, cognitive, and imaging measures in the 218 indivduals in the TRACK-HD cohort of Huntington's disease gene mutation carriers (data collected 2008–11). We generated a parallel progression score using data from 1773 previously genotyped participants from the European Huntington's Disease Network REGISTRY study of Huntington's disease mutation carriers (data collected 2003–13). We did a genome-wide association analyses in terms of progression for 216 TRACK-HD participants and 1773 REGISTRY participants, then a meta-analysis of these results was undertaken. Findings Longitudinal motor, cognitive, and imaging scores were correlated with each other in TRACK-HD participants, justifying use of a single, cross-domain measure of disease progression in both studies. The TRACK-HD and REGISTRY progression measures were correlated with each other (r=0·674), and with age at onset (TRACK-HD, r=0·315; REGISTRY, r=0·234). The meta-analysis of progression in TRACK-HD and REGISTRY gave a genome-wide significant signal (p=1·12 × 10−10) on chromosome 5 spanning three genes: MSH3, DHFR, and MTRNR2L2. The genes in this locus were associated with progression in TRACK-HD (MSH3 p=2·94 × 10−8 DHFR p=8·37 × 10−7 MTRNR2L2 p=2·15 × 10−9) and to a lesser extent in REGISTRY (MSH3 p=9·36 × 10−4 DHFR p=8·45 × 10−4 MTRNR2L2 p=1·20 × 10−3). The lead single nucleotide polymorphism (SNP) in TRACK-HD (rs557874766) was genome-wide significant in the meta-analysis (p=1·58 × 10−8), and encodes an aminoacid change (Pro67Ala) in MSH3. In TRACK-HD, each copy of the minor allele at this SNP was associated with a 0·4 units per year (95% CI 0·16–0·66) reduction in the rate of change of the Unified Huntington's Disease Rating Scale (UHDRS) Total Motor Score, and a reduction of 0·12 units per year (95% CI 0·06–0·18) in the rate of change of UHDRS Total Functional Capacity score. These associations remained significant after adjusting for age of onset. Interpretation The multidomain progression measure in TRACK-HD was associated with a functional variant that was genome-wide significant in our meta-analysis. The association in only 216 participants implies that the progression measure is a sensitive reflection of disease burden, that the effect size at this locus is large, or both. Knockout of Msh3 reduces somatic expansion in Huntington's disease mouse models, suggesting this mechanism as an area for future therapeutic investigation

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Pharmacophore-Based Discovery of Substrates of a Novel Drug/Proton-Antiporter in the Human Brain Endothelial hCMEC/D3 Cell Line

    No full text
    A drug/proton-antiporter, whose the molecular structure is still unknown, was previously evidenced at the blood-brain barrier (BBB) by functional experiments. The computational method could help in the identification of substrates of this solute carrier (SLC) transporter. Two pharmacophore models for substrates of this transporter using the FLAPpharm approach were developed. The trans-stimulation potency of 40 selected compounds for already known specific substrates ([3H]-clonidine) were determined and compared in the human brain endothelial cell line hCMEC/D3. Results. The two pharmacophore models obtained were used as templates to screen xenobiotic and endogenous compounds from four databases (e.g., Specs), and 45 hypothetical new candidates were tested to determine their substrate capacity. Psychoactive drugs such as antidepressants (e.g., imipramine, desipramine), antipsychotics/neuroleptics such as phenothiazine derivatives (chlorpromazine), sedatives anti-histamine-H1 drugs (promazine, promethazine, triprolidine, pheniramine), opiates/opioids (e.g., hydrocodone), trihexyphenidyl and sibutramine were correctly predicted as proton-antiporter substrates. The best performing pharmacophore model for the proton-antiporter substrates appeared as a good predictor of known substrates and allowed the identification of new substrate compounds. This model marks a new step in the characterization of this drug/proton-antiporter and will be of great use in uncovering its substrates and designing chemical entities with an improved influx capability to cross the BBB

    Tailoring the Viscoelasticity of Polymer Gels of Gluten Proteins through Solvent Quality

    No full text
    We investigate the linear viscoelasticity of polymer gels produced by the dispersion of gluten proteins in water/ethanol binary mixtures with various ethanol contents, from pure water to 60% v/v ethanol. We show that the complex viscoelasticity of the gels exhibits a time/solvent composition superposition principle, demonstrating the self-similarity of the gels produced in different binary solvents. All gels can be regarded as near critical gels with characteristic rheological parameters, elastic plateau, and characteristic relaxation time, which are related to one another, as a consequence of self-similarity, and span several orders of magnitude when changing the solvent composition. Thanks to calorimetry and neutron scattering experiments, we evidence a cosolvency effect with better solvation of the complex polymer-like chains of the gluten proteins as the amount of ethanol increases. Overall, the gel viscoelasticity can be accounted for by a unique characteristic length characterizing the cross-link density of the supramolecular network, which is solvent composition-dependent. On a molecular level, these findings could be interpreted as a transition of the supramolecular interactions, mainly H-bonds, from intra- to interchains, which would be facilitated by the disruption of hydrophobic interactions by ethanol molecules. This work provides a new insight for tailoring the gelation process of complex polymer gels

    Validation of a simple HPLC-UV method for rifampicin determination in plasma: Application to the study of rifampicin arteriovenous concentration gradient

    No full text
    International audienceIn clinical practice, rifampicin exposure is estimated from its concentration in venous blood samples. In this study, we hypothesized that differences in rifampicin concentration may exist between arterial and venous plasma. An HPLC-UV method for determining rifampicin concentration in plasma using rifapentine as an internal standard was validated. The method, which requires a simple protein precipitation procedure as sample preparation, was performed to compare venous and arterial plasma kinetics after a single therapeutic dose of rifampicin (8.6 mg/kg i.v, infused over 30 min) in baboons (n = 3). The method was linear from 0.1 to 40 ␟g mL −1 and all validation parameters fulfilled the international requirements. In baboons, rifampicin concentration in arterial plasma was higher than in venous plasma. Arterial C max was 2.1 ± 0.2 fold higher than venous C max. The area under the curve (AUC) from 0 to 120 min was ∌80% higher in arterial plasma, indicating a significant arteriovenous concentration gradient in early rifampicin pharmacokinetics. Arterial and venous plasma concentrations obtained 6 h after rifampicin injection were not different. An important arteriovenous equilibration delay for rifampicin pharmacokinetics is reported. Determination in venous plasma concentrations may considerably underestimate rifampicin exposure to organs during the distribution phase

    Phase separation dynamics of gluten protein mixtures

    No full text
    We investigate by time-resolved synchrotron ultra-small X-ray scattering the dynamics of liquid–liquid phase-separation (LLPS) of gluten protein suspensions following a temperature quench. Samples at a fixed concentration (237 mg ml−1) but with different protein compositions are investigated. In our experimental conditions, we show that fluid viscoelastic samples depleted in polymeric glutenin phase-separate following a spinodal decomposition process. We quantitatively probe the late stage coarsening that results from a competition between thermodynamics that speeds up the coarsening rate as the quench depth increases and transport that slows down the rate. For even deeper quenches, the even higher viscoelasticity of the continuous phase leads to a “quasi” arrested phase separation. Anomalous phase-separation dynamics is by contrast measured for a gel sample rich in glutenin, due to elastic constraints. This work illustrates the role of viscoelasticity in the dynamics of LLPS in protein dispersions

    Diphenhydramine as a selective probe to study H + -antiporter function at the blood–brain barrier: Application to [ 11 C]diphenhydramine positron emission tomography imaging

    No full text
    International audienceDiphenhydramine, a sedative histamine H 1 -receptor (H 1 R) antagonist, was evaluated as a probe to measure drug/H + -antiporter function at the blood–brain barrier. In situ brain perfusion experiments in mice and rats showed that diphenhydramine transport at the blood–brain barrier was saturable, following Michaelis–Menten kinetics with a K m = 2.99 mM and V max = 179.5 nmol s −1 g −1 . In the pharmacological plasma concentration range the carrier-mediated component accounted for 77% of diphenhydramine influx while passive diffusion accounted for only 23%. [ 14 C]Diphenhydramine blood–brain barrier transport was proton and clonidine sensitive but was influenced by neither tetraethylammonium, a MATE1 (SLC47A1), and OCT/OCTN (SLC22A1-5) modulator, nor P-gp/Bcrp (ABCB 1a/1b /ABCG2) deficiency. Brain and plasma kinetics of [ 11 C]diphenhydramine were measured by positron emission tomography imaging in rats. [ 11 C]Diphenhydramine kinetics in different brain regions were not influenced by displacement with 1 mg kg −1 unlabeled diphenhydramine, indicating the specificity of the brain positron emission tomography signal for blood–brain barrier transport activity over binding to any central nervous system target in vivo. [ 11 C]Diphenhydramine radiometabolites were not detected in the brain 15 min after injection, allowing for the reliable calculation of [ 11 C]diphenhydramine brain uptake clearance (Cl up = 0.99 ± 0.18 mL min −1 cm −3 ). Diphenhydramine is a selective and specific H + -antiporter substrate. [ 11 C]Diphenhydramine positron emission tomography imaging offers a reliable and noninvasive method to evaluate H + -antiporter function at the blood–brain barrier
    • 

    corecore