424 research outputs found
Anticonvulsant effects of hesperetin in animal model of pentylenetetrazole-induced-seizures
Background and objective: Hesperetin as the main flavonoid in citrus possesses various pharmacological properties including anti-oxidant and anti-inflammatory effects. In this study, the effects of hesperetin on seizures behavior and its function on total antioxidant capacity and lipid peroxidation has been investigated in pentylenetetrazol (PTZ)-induced seizures model.
Materials and methods: In this experimental study, thirty-five mice were divided into 5 experimental groups as control, saline and hesperetin at doses of 10, 20 or 50 mg/kg. Animals received orally the related interventions for 7 days. On day 7, 30 minutes after oral gavage, convulsion was induced by single intraperitoneal (i.p.) injection of PTZ at dose of 60 mg/kg. After recording of convulsion behaviors including latency to myoclonic jerks, latency and duration of generalized tonic-clonic seizures, time to death, measuring of Ferric Reducing Antioxidant Power (FRAP) and Thiobarbituric acid reactive substances (TBARS) carried out in hippocampus tissues.
Findings: Pretreatment with hesperetin at dose of 50 mg/kg significantly increased the latency of myoclonic jerks (hesperetin 50: P=0.0323) and generalized tonic-clonic seizures (hesperetin 10: P= 0.0003, hesperetin 20: 0.0017, hesperetin 50: P=0.0040). Hesperetin application at dose of 10 mg/kg significantly reduced the levels of TBARS compared to control group. Any significant difference in FRAP levels was not observed between different experimental groups.
Conclusion: The results of study indicate that hesperetin might be effective as supplementary treatment in epilepsy disorder
A portable prototype magnetometer to differentiate ischemic and non-ischemic heart disease in patients with chest pain
Background: Magnetocardiography (MCG) is a non-invasive technique used to measure and map cardiac magnetic fields. We describe the predictive performance of a portable prototype magnetometer designed for use in acute and routine clinical settings. We assessed the predictive ability of the measurements derived from the magnetometer for the ruling-out of healthy subjects and patients whose chest pain has a non-ischemic origin from those with ischemic heart disease (IHD). Methods: MCG data were analyzed from a technical performance study, a pilot clinical study, and a young healthy reference group. Participants were grouped to enable differentiation of those with IHD versus non-IHD versus controls: Group A (70 IHD patients); Group B (69 controls); Group C (37 young healthy volunteers). Scans were recorded in an unshielded room. Between-group differences were explored using analysis of variance. The ability of 10 candidate MCG predictors to predict normal/abnormal cases was analyzed using logistic regression. Predictive performance was internally validated using repeated five-fold cross-validation. Results: Three MCG predictors showed a significant difference between patients and age-matched controls (P<0.001); eight predictors showed a significant difference between patients and young healthy volunteers (P<0.001). Logistic regression comparing patients with controls yielded a specificity of 35.0%, sensitivity of 95.4%, and negative predictive value for the ruling-out of IHD of 97.8% (area under the curve 0.78). Conclusion: This analysis represents a preliminary indication that the portable magnetometer can help rule-out healthy subjects and patients whose chest pain has a non-ischemic origin from those with IHD
Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector
Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente
Disease-associated missense mutations in GluN2B subunit alter NMDA receptor ligand binding and ion channel properties.
Genetic and bioinformatic analyses have identified missense mutations in GRIN2B encoding the NMDA receptor GluN2B subunit in autism, intellectual disability, Lennox Gastaut and West Syndromes. Here, we investigated several such mutations using a near-complete, hybrid 3D model of the human NMDAR and studied their consequences with kinetic modelling and electrophysiology. The mutants revealed reductions in glutamate potency; increased receptor desensitisation; and ablation of voltage-dependent Mg block. In addition, we provide new views on Mg and NMDA channel blocker binding sites. We demonstrate that these mutants have significant impact on excitatory transmission in developing neurons, revealing profound changes that could underlie their associated neurological disorders. Of note, the NMDAR channel mutant GluN2B unusually allowed Mg permeation, whereas nearby N615I reduced Ca permeability. By identifying the binding site for an NMDAR antagonist that is used in the clinic to rescue gain-of-function phenotypes, we show that drug binding may be modified by some GluN2B disease-causing mutations
Anandamide Induces Sperm Release from Oviductal Epithelia through Nitric Oxide Pathway in Bovines
Mammalian spermatozoa are not able to fertilize an egg immediately upon ejaculation. They acquire this ability during their transit through the female genital tract in a process known as capacitation. The mammalian oviduct acts as a functional sperm reservoir providing a suitable environment that allows the maintenance of sperm fertilization competence until ovulation occurs. After ovulation, spermatozoa are gradually released from the oviductal reservoir in the caudal isthmus and ascend to the site of fertilization. Capacitating-related changes in sperm plasma membrane seem to be responsible for sperm release from oviductal epithelium. Anandamide is a lipid mediator that participates in the regulation of several female and male reproductive functions. Previously we have demonstrated that anandamide was capable to release spermatozoa from oviductal epithelia by induction of sperm capacitation in bovines. In the present work we studied whether anandamide might exert its effect by activating the nitric oxide (NO) pathway since this molecule has been described as a capacitating agent in spermatozoa from different species. First, we demonstrated that 1 µM NOC-18, a NO donor, and 10 mM L-Arginine, NO synthase substrate, induced the release of spermatozoa from the oviductal epithelia. Then, we observed that the anandamide effect on sperm oviduct interaction was reversed by the addition of 1 µM L-NAME, a NO synthase inhibitor, or 30 µg/ml Hemoglobin, a NO scavenger. We also demonstrated that the induction of bull sperm capacitation by nanomolar concentrations of R(+)-methanandamide or anandamide was inhibited by adding L-NAME or Hemoglobin. To study whether anandamide is able to produce NO, we measured this compound in both sperm and oviductal cells. We observed that anandamide increased the levels of NO in spermatozoa, but not in oviductal cells. These findings suggest that anandamide regulates the sperm release from oviductal epithelia probably by activating the NO pathway during sperm capacitation
Albumin and multiple sclerosis
A grant from the One-University Open Access Fund at the University of Kansas was used to defray the author's publication fees in this Open Access journal. The Open Access Fund, administered by librarians from the KU, KU Law, and KUMC libraries, is made possible by contributions from the offices of KU Provost, KU Vice Chancellor for Research & Graduate Studies, and KUMC Vice Chancellor for Research. For more information about the Open Access Fund, please see http://library.kumc.edu/authors-fund.xml.Leakage of the blood–brain barrier (BBB) is a common pathological feature in multiple sclerosis (MS). Following a breach of the BBB, albumin, the most abundant protein in plasma, gains access to CNS tissue where it is exposed to an inflammatory milieu and tissue damage, e.g., demyelination. Once in the CNS, albumin can participate in protective mechanisms. For example, due to its high concentration and molecular properties, albumin becomes a target for oxidation and nitration reactions. Furthermore, albumin binds metals and heme thereby limiting their ability to produce reactive oxygen and reactive nitrogen species. Albumin also has the potential to worsen disease. Similar to pathogenic processes that occur during epilepsy, extravasated albumin could induce the expression of proinflammatory cytokines and affect the ability of astrocytes to maintain potassium homeostasis thereby possibly making neurons more vulnerable to glutamate exicitotoxicity, which is thought to be a pathogenic mechanism in MS. The albumin quotient, albumin in cerebrospinal fluid (CSF)/albumin in serum, is used as a measure of blood-CSF barrier dysfunction in MS, but it may be inaccurate since albumin levels in the CSF can be influenced by multiple factors including: 1) albumin becomes proteolytically cleaved during disease, 2) extravasated albumin is taken up by macrophages, microglia, and astrocytes, and 3) the location of BBB damage affects the entry of extravasated albumin into ventricular CSF. A discussion of the roles that albumin performs during MS is put forth
Combined measurement of differential and total cross sections in the H → γγ and the H → ZZ* → 4ℓ decay channels at s=13 TeV with the ATLAS detector
A combined measurement of differential and inclusive total cross sections of Higgs boson production is performed using 36.1 fb−1 of 13 TeV proton–proton collision data produced by the LHC and recorded by the ATLAS detector in 2015 and 2016. Cross sections are obtained from measured H→γγ and H→ZZ*(→4ℓ event yields, which are combined taking into account detector efficiencies, resolution, acceptances and branching fractions. The total Higgs boson production cross section is measured to be 57.0−5.9 +6.0 (stat.) −3.3 +4.0 (syst.) pb, in agreement with the Standard Model prediction. Differential cross-section measurements are presented for the Higgs boson transverse momentum distribution, Higgs boson rapidity, number of jets produced together with the Higgs boson, and the transverse momentum of the leading jet. The results from the two decay channels are found to be compatible, and their combination agrees with the Standard Model predictions
Performance of missing transverse momentum reconstruction with the ATLAS detector using proton–proton collisions at √s = 13 TeV
The performance of the missing transverse momentum (EmissT) reconstruction with the ATLAS detector is evaluated using data collected in proton–proton collisions at the LHC at a centre-of-mass energy of 13 TeV in 2015. To reconstruct EmissT, fully calibrated electrons, muons, photons, hadronically decaying τ -leptons, and jets reconstructed from calorimeter energy deposits and charged-particle tracks are used. These are combined with the soft hadronic activity measured by reconstructed charged-particle tracks not associated with the hard objects. Possible double counting of contributions from reconstructed charged-particle tracks from the inner detector, energy deposits in the calorimeter, and reconstructed muons from the muon spectrometer is avoided by applying a signal ambiguity resolution procedure which rejects already used signals when combining the various EmissT contributions. The individual terms as well as the overall reconstructed EmissT are evaluated with various performance metrics for scale (linearity), resolution, and sensitivity to the data-taking conditions. The method developed to determine the systematic uncertainties of the EmissT scale and resolution is discussed. Results are shown based on the full 2015 data sample corresponding to an integrated luminosity of 3.2 fb−1
- …