167 research outputs found

    Central North Sea - CO2 Storage Hub Enabling CCS Deployment in the UK and Europe

    Get PDF
    Carbon Capture & Storage is widely recognised as a vital technology which will play a significant role in the generation of low carbon electricity. CCS has the potential to reduce the carbon emissions of fossil fuelled power stations by as much as 90% as well as offering the only realistic solution to heavy industrial emitters such as steel mills, petrochemical refineries and cement manufacturing plants. Projects which can combine capture of emissions from power generation as well industrial emitters will enable the development of CO2 transport infrastructure which can act to safeguard existing employment in carbon-intensive industries within the UK and EU. CCS development zones can also attract new energy intensive industries to locate into an area with an established network of CO2 pipelines. That means low marginal costs to connect into a guaranteed network for transportation and storage of captured CO2. Recent studies examining the levelised cost of electricity have consistently demonstrated that CCS will be competitive with renewable generation technologies such as offshore wind. CCS provides a low-carbon solution to the issue of intermittency which is inevitable with wind power, thereby helping to address the need for energy security in a future which will see a growth in the percentage of power generation from renewable sources. Fossil fuels will be part of the energy and industry system for many decades to come. CCS is the only viable option for abating those CO2 emissions. The creation of a CCS industry in the UK will provide opportunities for economic growth through the retention of many thousands of high-value jobs, creation of thousands of new jobs, increased manufacturing activity, as well as retention of the UK's world leading oil & gas supply chain for home investment and billions of pounds in export services.Carbon Capture & Storage is widely recognised as a vital technology which will play a significant role in the generation of low carbon electricity. CCS has the potential to reduce the carbon emissions of fossil fuelled power stations by as much as 90% as well as offering the only realistic solution to heavy industrial emitters such as steel mills, petrochemical refineries and cement manufacturing plants. Projects which can combine capture of emissions from power generation as well industrial emitters will enable the development of CO2 transport infrastructure which can act to safeguard existing employment in carbon-intensive industries within the UK and EU. CCS development zones can also attract new energy intensive industries to locate into an area with an established network of CO2 pipelines. That means low marginal costs to connect into a guaranteed network for transportation and storage of captured CO2. Recent studies examining the levelised cost of electricity have consistently demonstrated that CCS will be competitive with renewable generation technologies such as offshore wind. CCS provides a low-carbon solution to the issue of intermittency which is inevitable with wind power, thereby helping to address the need for energy security in a future which will see a growth in the percentage of power generation from renewable sources. Fossil fuels will be part of the energy and industry system for many decades to come. CCS is the only viable option for abating those CO2 emissions. The creation of a CCS industry in the UK will provide opportunities for economic growth through the retention of many thousands of high-value jobs, creation of thousands of new jobs, increased manufacturing activity, as well as retention of the UK's world leading oil & gas supply chain for home investment and billions of pounds in export services

    Region prioritization for the development carbon capture and utilization technologies

    Get PDF
    In recent years several strategies have been developed and adopted to reduce the levels of the Greenhouse Gas Emissions emitted to the atmosphere. The adoption of Carbon Capture and Utilization (CCU) technologies may contribute towards carbon sequestration as well as to the creation of high value products. This study presents a methodology to assess the potential of CO2utilization across Europe, and to identify the European regions with the greater potential to deploy nine selected carbon dioxide utilization technologies. The results show that Germany, UK and France at the first level followed by Spain, Italy and Poland are the countries where the larger quantities of available CO2 could be found but also where the majority of the potential receiving processes are located, and therefore with the greatest potential for CO2 utilization. The study has also revealed several specific regions where reuse schemes based on CO2 could be developed both in Central Europe (Dusseldorf and Cologne – Germany, Antwerp Province and East Flanders –Belgium and Śląskie – Poland) and in Scandinavia (Etelä-Suomi and Helsinki-Uusimaa –Finland). Finally, among all the selected technologies, concrete curing and horticulture production are the technologies with the higher potential for CO2 utilization in Europe

    Dispelling urban myths about default uncertainty factors in chemical risk assessment - Sufficient protection against mixture effects?

    Get PDF
    © 2013 Martin et al.; licensee BioMed Central LtdThis article has been made available through the Brunel Open Access Publishing Fund.Assessing the detrimental health effects of chemicals requires the extrapolation of experimental data in animals to human populations. This is achieved by applying a default uncertainty factor of 100 to doses not found to be associated with observable effects in laboratory animals. It is commonly assumed that the toxicokinetic and toxicodynamic sub-components of this default uncertainty factor represent worst-case scenarios and that the multiplication of those components yields conservative estimates of safe levels for humans. It is sometimes claimed that this conservatism also offers adequate protection from mixture effects. By analysing the evolution of uncertainty factors from a historical perspective, we expose that the default factor and its sub-components are intended to represent adequate rather than worst-case scenarios. The intention of using assessment factors for mixture effects was abandoned thirty years ago. It is also often ignored that the conservatism (or otherwise) of uncertainty factors can only be considered in relation to a defined level of protection. A protection equivalent to an effect magnitude of 0.001-0.0001% over background incidence is generally considered acceptable. However, it is impossible to say whether this level of protection is in fact realised with the tolerable doses that are derived by employing uncertainty factors. Accordingly, it is difficult to assess whether uncertainty factors overestimate or underestimate the sensitivity differences in human populations. It is also often not appreciated that the outcome of probabilistic approaches to the multiplication of sub-factors is dependent on the choice of probability distributions. Therefore, the idea that default uncertainty factors are overly conservative worst-case scenarios which can account both for the lack of statistical power in animal experiments and protect against potential mixture effects is ill-founded. We contend that precautionary regulation should provide an incentive to generate better data and recommend adopting a pragmatic, but scientifically better founded approach to mixture risk assessment. © 2013 Martin et al.; licensee BioMed Central Ltd.Oak Foundatio

    Thresholds of Toxicological Concern for Cosmetics-Related Substances: New Database, Thresholds, and Enrichment of Chemical Space

    Get PDF
    A new dataset of cosmetics-related chemicals for the Threshold of Toxicological Concern (TTC) approach has been compiled, comprising 552 chemicals with 219, 40, and 293 chemicals in Cramer Classes I, II, and III, respectively. Data were integrated and curated to create a database of No-/Lowest-Observed-Adverse-Effect Level (NOAEL/LOAEL) values, from which the final COSMOS TTC dataset was developed. Criteria for study inclusion and NOAEL decisions were defined, and rigorous quality control was performed for study details and assignment of Cramer classes. From the final COSMOS TTC dataset, human exposure thresholds of 42 and 7.9 μg/kg-bw/day were derived for Cramer Classes I and III, respectively. The size of Cramer Class II was insufficient for derivation of a TTC value. The COSMOS TTC dataset was then federated with the dataset of Munro and colleagues, previously published in 1996, after updating the latter using the quality control processes for this project. This federated dataset expands the chemical space and provides more robust thresholds. The 966 substances in the federated database comprise 245, 49 and 672 chemicals in Cramer Classes I, II and III, respectively. The corresponding TTC values of 46, 6.2 and 2.3 μg/kg-bw/day are broadly similar to those of the original Munro dataset

    Adipose tissue concentrations of non-persistent environmental phenols and local redox balance in adults from Southern Spain

    Get PDF
    The aim was to evaluate the associations of environmental phenol and paraben concentrations with the oxidative microenvironment in adipose tissue. This study was conducted in a subsample (n=144) of the GraMo cohort (Southern Spain). Concentrations of 9 phenols and 7 parabens, and levels of oxidative stress biomarkers were quantified in adipose tissue. Associations were estimated using multivariable linear regression analyses adjusted for potential confounders. Benzophenone-3 (BP-3) concentration was borderline associated with enhanced glutathione peroxidase (GPx) activity [exp(β)=1.20, p=0.060] and decreased levels of reduced glutathione (GSH) [exp(β)=0.55, p=0.070]. Concentrations of bisphenol A (BPA) and methylparaben (MeP) were associated to lower glutathione reductase (GRd) activity [exp(β)=0.83, exp(β)=0.72, respectively], and BPA was borderline associated to increased levels of oxidized glutathione (GSSG) [exp(β)=1.73, p-value=0.062]. MeP was inversely associated to both hemeoxygenase-1 (HO-1) and superoxide dismustase (SOD) activity, as well as to the levels of thiobarbituric acid reactive substances (TBARS) [0.75 < exp(β) < 0.79]. Our results suggest that some specific non-persistent pollutants may be associated with a disruption of the activity of relevant antioxidant enzymes, in addition to the depletion of the glutathione stock. They might act as a tissue-specific source of free radicals, contributing to the oxidative microenvironment in the adipose tissue.This research was supported in part by research grants from the European Union Commission (H2020-EJP-HBM4EU and SOE1/P1/F0082), Biomedical Research Networking Center-CIBER de Epidemiología y Salud Pública (CIBERESP), from the Institute of Health Carlos III, supported by European Regional Development Fund/FEDER (FIS-PI13/02406, FISPI14/ 00067, FIS-PI16/01820, FIS-PI16/01812, FIS-PI16/01858 and FIS-PI17/01743), and from the Consejería de Salud, Junta de Andalucía (PS-0506-2016). Funding for the equipment used was provided by Velux Fonden, Augustinus Fonden and Svend Andersen Fonden. The authors thank Kirsten og Freddy Johansens Fond and the International Centre for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC, Rigshospitalet, Copenhagen University) for economic support. Dr. Juan Pedro Arrebola is under contract within Ramón y Cajal Program (Ministerio de Economía, Industria y Competitividad de España, RYC-2016-20155)

    Genotoxicity of metal oxide nanomaterials: review of recent data and discussion of possible mechanisms

    Get PDF
    Nanotechnology has rapidly entered into human society, revolutionized many areas, including technology, medicine and cosmetics. This progress is due to the many valuable and unique properties that nanomaterials possess. In turn, these properties might become an issue of concern when considering potentially uncontrolled release to the environment. The rapid development of new nanomaterials thus raises questions about their impact on the environment and human health. This review focuses on the potential of nanomaterials to cause genotoxicity and summarizes recent genotoxicity studies on metal oxide/silica nanomaterials. Though the number of genotoxicity studies on metal oxide/silica nanomaterials is still limited, this endpoint has recently received more attention for nanomaterials, and the number of related publications has increased. An analysis of these peer reviewed publications over nearly two decades shows that the test most employed to evaluate the genotoxicity of these nanomaterials is the comet assay, followed by micronucleus, Ames and chromosome aberration tests. Based on the data studied, we concluded that in the majority of the publications analysed in this review, the metal oxide (or silica) nanoparticles of the same core chemical composition did not show different genotoxicity study calls (i.e. positive or negative) in the same test, although some results are inconsistent and need to be confirmed by additional experiments. Where the results are conflicting, it may be due to the following reasons: (1) variation in size of the nanoparticles; (2) variations in size distribution; (3) various purities of nanomaterials; (4) variation in surface areas for nanomaterials with the same average size; (5) differences in coatings; (6) differences in crystal structures of the same types of nanomaterials; (7) differences in size of aggregates in solution/media; (8) differences in assays; (9) different concentrations of nanomaterials in assay tests. Indeed, due to the observed inconsistencies in the recent literature and the lack of adherence to appropriate, standardized test methods, reliable genotoxicity assessment of nanomaterials is still challenging

    Grouping of nanomaterials to read-across hazard endpoints: from data collection to assessment of the grouping hypothesis by application of chemoinformatic techniques

    Get PDF
    An increasing number of manufactured nanomaterials (NMs) are being used in industrial products and need to be registered under the REACH legislation. The hazard characterisation of all these forms is not only technically challenging but resource and time demanding. The use of non-testing strategies like read-across is deemed essential to assure the assessment of all NMs in due time and at lower cost. The fact that read-across is based on the structural similarity of substances represents an additional difficulty for NMs as in general their structure is not unequivocally defined. In such a scenario, the identification of physicochemical properties affecting the hazard potential of NMs is crucial to define a grouping hypothesis and predict the toxicological hazards of similar NMs. In order to promote the read-across of NMs, ECHA has recently published “Recommendations for nanomaterials applicable to the guidance on QSARs and Grouping”, but no practical examples were provided in the document. Due to the lack of publicly available data and the inherent difficulties of reading-across NMs, only a few examples of read-across of NMs can be found in the literature. This manuscript presents the first case study of the practical process of grouping and read-across of NMs following the workflow proposed by ECHA. The workflow proposed by ECHA was used and slightly modified to present the read-across case study. The Read-Across Assessment Framework (RAAF) was used to evaluate the uncertainties of a read-across within NMs. Chemoinformatic techniques were used to support the grouping hypothesis and identify key physicochemical properties. A dataset of 6 nanoforms of TiO2 with more than 100 physicochemical properties each was collected. In vitro comet assay result was selected as the endpoint to read-across due to data availability. A correlation between the presence of coating or large amounts of impurities and negative comet assay results was observed. The workflow proposed by ECHA to read-across NMs was applied successfully. Chemoinformatic techniques were shown to provide key evidence for the assessment of the grouping hypothesis and the definition of similar NMs. The RAAF was found to be applicable to NMs

    In silico toxicology protocols

    Get PDF
    The present publication surveys several applications of in silico (i.e., computational) toxicology approaches across different industries and institutions. It highlights the need to develop standardized protocols when conducting toxicity-related predictions. This contribution articulates the information needed for protocols to support in silico predictions for major toxicological endpoints of concern (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) across several industries and regulatory bodies. Such novel in silico toxicology (IST) protocols, when fully developed and implemented, will ensure in silico toxicological assessments are performed and evaluated in a consistent, reproducible, and well-documented manner across industries and regulatory bodies to support wider uptake and acceptance of the approaches. The development of IST protocols is an initiative developed through a collaboration among an international consortium to reflect the state-of-the-art in in silico toxicology for hazard identification and characterization. A general outline for describing the development of such protocols is included and it is based on in silico predictions and/or available experimental data for a defined series of relevant toxicological effects or mechanisms. The publication presents a novel approach for determining the reliability of in silico predictions alongside experimental data. In addition, we discuss how to determine the level of confidence in the assessment based on the relevance and reliability of the information

    Frameworks and tools for risk assessment of manufactured nanomaterials

    Get PDF
    Commercialization of nanotechnologies entails a regulatory requirement for understanding their environmental, health and safety (EHS) risks. Today we face challenges to assess these risks, which emerge from uncertainties around the interactions of manufactured nanomaterials (MNs) with humans and the environment. In order to reduce these uncertainties, it is necessary to generate sound scientific data on hazard and exposure by means of relevant frameworks and tools. The development of such approaches to facilitate the risk assessment (RA) of MNs has become a dynamic area of research. The aim of this paper was to review and critically analyse these approaches against a set of relevant criteria. The analysis concluded that none of the reviewed frameworks were able to fulfill all evaluation criteria. Many of the existing modelling tools are designed to provide screening-level assessments rather than to support regulatory RA and risk management. Nevertheless, there is a tendency towards developing more quantitative, higher-tier models, capable of incorporating uncertainty into their analyses. There is also a trend towards developing validated experimental protocols for material identification and hazard testing, reproducible across laboratories. These tools could enable a shift from a costly case-by-case RA of MNs towards a targeted, flexible and efficient process, based on grouping and read-across strategies and compliant with the 3R (Replacement, Reduction, Refinement) principles. In order to facilitate this process, it is important to transform the current efforts on developing databases and computational models into creating an integrated data and tools infrastructure to support the risk assessment and management of MNs.Commercialization of nanotechnologies entails a regulatory requirement for understanding their environmental, health and safety (EHS) risks. Today we face challenges to assess these risks, which emerge from uncertainties around the interactions of manufactured nanomaterials (MNs) with humans and the environment. In order to reduce these uncertainties, it is necessary to generate sound scientific data on hazard and exposure by means of relevant frameworks and tools. The development of such approaches to facilitate the risk assessment (RA) of MNs has become a dynamic area of research. The aim of this paper was to review and critically analyse these approaches against a set of relevant criteria. The analysis concluded that none of the reviewed frameworks were able to fulfill all evaluation criteria. Many of the existing modelling tools are designed to provide screening level assessments rather than to support regulatory RA and risk management Nevertheless, there is a tendency towards developing more quantitative, higher-tier models, capable of incorporating uncertainty into their analyses. There is also a trend towards developing validated experimental protocols for material identification and hazard testing, reproducible across laboratories. These tools could enable a shift from a costly case-by-case RA of MNs towards a targeted, flexible and efficient process, based on grouping and read-across strategies and compliant with the 3R (Replacement, Reduction, Refinement) principles. In order to facilitate this process, it is important to transform the current efforts on developing databases and computational models into creating an integrated data and tools infrastructure to support the risk assessment and management of MNs. (C) 2016 Elsevier Ltd. All rights reserved
    corecore