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Abstract 

In recent years several strategies have been developed and adopted to reduce the levels of the Greenhouse 

Gas Emissions emitted to the atmosphere. The adoption of Carbon Capture and Utilization (CCU) 

technologies may contribute towards carbon sequestration as well as to the creation of high value products. 

This study presents a methodology to assess the potential of CO2utilization across Europe, and to identify the 

European regions with the greater potential to deploy nine selected carbon dioxide utilization technologies. 

The results show that Germany, UK and France at the first level followed by Spain, Italy and Poland are the 

countries where the larger quantities of available CO2 could be found but also where the majority of the 

potential receiving processes are located, and therefore with the greatest potential for CO2 utilization. The 

study has also revealed several specific regions where reuse schemes based on CO2 could be developed both 

in Central Europe (Dusseldorf and Cologne – Germany, Antwerp Province and East Flanders –Belgium and 

Śląskie – Poland) and in Scandinavia (Etelä-Suomi and Helsinki-Uusimaa –Finland). Finally, among all the 

selected technologies, concrete curing and horticulture production are the technologies with the higher 

potential for CO2 utilization in Europe. 

Keywords: Carbon utilization; CO2 emissions; Industries; Waste; Value chains; CO2 reuse 

1 Introduction 
In 2011 the European Council announced that one of the environmental targets set in the Roadmap 

for 2050 is to reduce the levels of the Greenhouse Gas Emissions (GHG) at least by 80–95% below the values 

from 1990 by 2050 [4]. In the last couple of decades the European Union authorities together with all the EU 

member countries have made efforts to reduce emissions, with the following main pillars of their strategy 

towards a low carbon economy and society: (a) promotion of renewable energy sources, (b) implementation 

of energy saving measures and (c) development of carbon capture and storage (CCS) projects. All the efforts 

were also supported by the adoption of several regulations such as the EU Emissions Trading System (EU-

ETS) EC, 2003. 

This is the main reason why CCS has been rapidly developing worldwide during the last decade 

from pilot and demonstration plants to full scale projects, with geological and ocean storage being the main 

options for CO2 storage. Indicative projects include the Sleipner CO2 Storage Project (0.9 Mtpa) and the 

Snøhvit CO2Storage Project (0.7 Mtpa), in Norway, which already operate from 1996 and 2007 respectively, 

and the Don Valley Power Project and the Teesside Collective Project in the UK (both expected to operate 

during the next decade) [3,27]. 



By contrast, carbon capture and utilization (CCU), which includes the utiliszation of previously 

captured CO2 as working fluid or as feedstock in industrial applications, has begun to get the same level of 

attention only during the last few years [40]. New CO2-based value chains can be developed using CCU 

technologies and can play an important role in the future either through the development of sustainable energy 

carriers, as well as through the production of different types of carbon derived products [2]. In order to enable 

the development of such value chains, it is critical to gather detailed information both about the available 

CO2sources (e.g. purity, mass flow) and for the alternative CCU technologies (technology readiness level, 

cost, quality requirements). Then, it is necessary to identify the regions in which both sources and industries 

where CCU technologies could be installed co-exist in order to activate subsequently all the relevant 

stakeholders. Parallel to that, emphasis should also be given to the development of improved capture and 

purification technologies and more efficient transformation processes. Additionally, CO2 use as raw material 

will be coupled with the use of other sources and materials providing an opportunity to develop industrial 

symbiosis. For example, in Iceland a factory (Carbon Recycling International) produces methanol at a large 

scale, using CO2 containing flue gas from a geothermal power plant as well as electricity geothermal [7]. 

The “enCO2re” (Enabling CO2 reuse) project, a flagship project financed by the European Institute 

of Innovation and Technology – Climate Knowledge Innovation Community, focuses on all the aspects of a 

successful CCU scheme; from mapping all potential CO2 sources and sinks to developing new and improved 

carbon neutral products and educating its industrial partners, entrepreneurs, decision makers and researchers 

about recent developments and relevant issues. 

1.1 State of the art 

Due to the earlier development of CCS, there already exist several attempts to map on a global level 

the sites where CCS currently takes place as well as sites with increased potential for investment. The Scottish 

Carbon Capture & Storage (SCCS) interactive world map of carbon capture and storage projects provides 

information about large-scale operating and planned projects with annual capacity greater than 0.5 Mt per 

annum (Mtpa) and also includes smaller scale but significant pilot projects from capture and storage to full-

chain CCS [38]. Similar maps have been also created by the MIT Carbon Capture and Sequestration 

Technologies Program [27] and the IEA Greenhouse Gas R&D Programme [21]. Going one step further than 

simple mapping, the U.S. Department of Energy (DOE) Carbon Storage Atlas provides an estimate of the 

CCS potential across the United States and other portions of North America, by combining the available 

CO2stationary sources and the alternative storage points [44], whereas Szulczewski et al. [42] have 

performed a US-wide assessment of CO2 storage capacity by using both analytical models and regional 

geological models and have estimated a total storage capacity of over 100 Gt in the continental US. Moreover, 

the Capacity Map developed by SETIS assesses the public and corporate R&D investment in Carbon Capture 

and Storage in the EU (among other low-carbon energy technologies), thus highlighting candidate countries 

for the development of such projects and providing a benchmark for future investments [6]. 

Similar studies, focusing on the CCU potential, are in their beginning. Pérez-Fortes et al. [32] 

analysed two different CCU options, methanol synthesis and accelerated aqueous carbonation of waste (fly 

ash), and assessed the role of CCU on the future European energy and industrial sectors, through a techno 

economic analysis. Process flow modelling was used to estimate all the relevant technical and economic 

values, assuming that the CO2 source is a conventional power plant. Wei et al. [46] examined the potential 

of developing CCU projects in China, using technology readiness level (TRL) and geographic distribution 

as their two main criteria, and identified specific regions that are potential candidates to develop CCU 

technologies at different timeframes. A similar analysis was performed by Reiter and Lindorfer [36], who 

have evaluated the potential of using several alternative CO2 sources within the power-to-gas industry in 

Austria, with the results revealing that the available CO2 is enough to satisfy all the power-to-gas processes 

in the country. The ideal source has been identified as CO2 from biogas upgrading facilities or bioethanol 

plants, based on capture cost, specific energy requirement and CO2 penalty. A team led by Element Energy, 

and comprising Carbon Counts, PSE, Imperial College and the University of Sheffield, has carried out a 

study of industrial CO2 capture for storage or utilization and developed three alternative scenarios for the 

deployment of CCU technologies in the UK by 2025. The four technologies that were selected to be included 

in these scenarios are methanol production, mineral carbonation, polymer production and direct industrial 

use of CO2. The annual CO2utilization ranged from 0.5 to 0.7 Mtpa for the moderate scenario to 9 Mtpa for 

the very high utilization scenario [14]. However, all these focus either on a few CO2 end-receiving processes 

or on a specific country. von der Assen et al. [48] have mapped the available CO2 sources greater than 0.1 



Mtpa on a European level and have identified the favourable locations for CO2 utilization with the lowest 

environmental impacts of CO2supply, the so-called CO2 oases, by using environmental-merit-order curves. 

The present paper will attempt to assess the potential of CO2 utilization across Europe, and to 

identify the European regions with the greater potential to deploy nine selected carbon dioxide utilization 

technologies. The selection of these technologies is primarily based on their TRL and is validated by the 

industrial stakeholders involved in the project. The current production level of the goods that could 

potentially use CO2as raw material and the availability of by-products that could be combined with CO2 in 

order to create new opportunities are retrieved from publicly available databases for the baseline year 2013. 

The countries with the higher potential are identified and a more detailed analysis at a regional level is carried 

out in order to pinpoint the regions that could be considered as candidates for the development of CO2-based 

industrial clusters and thus for further study. Furthermore, a preliminary rough estimation of the amount of 

CO2 than can be used by each technology is also performed. Section 2 briefly presents the methodology that 

will be followed for the estimation of CO2 availability and potential for utilization, while Section 3 illustrates 

the results of the application of this approach in Europe. Section 4 summarizes the findings, highlights the 

most prominent regions for the development of CCU schemes but also enumerates several suggestions to 

improve the approach towards a more accurate estimation. 

2 Methodology 
A top-down methodological approach has been developed in order to identify the key European 

regions with potential for developing CCU partnerships (Fig. 1). The selection of a top-down approach is 

also driven by the possibility of using common available statistical data that allows the determination of 

maximum values of different flows [23]. 

 
Fig. 1 Methodological Framework. 

alt-text: Fig. 1  

The approach is divided in two blocks. In the first block, the current potential for CO2 utilization at 

regional level in Europe is quantified and characterized. The calculated values represent what can be defined 

as the potential demand for CCU. The second block characterizes and quantifies CO2 emitted by industrial 

stationary sources at a regional level and can be regarded as the potential availability of CO2 as a feedstock 

or supplementary resource. The outputs of both blocks are estimated on a regional level and are juxtaposed 

in order to prioritize regions with potential to developed CCU business models. At this point the analysis is 

exclusively based on quantities and distances, whilst purities should be dealt with separately at a later stage, 

in opportunity development for the identified key areas. A detailed description of the top-down methodology 

is presented in the following sections. 

2.1 Assessing the potential for CO2 utilization 

CO2 is currently used as an input in several industrial processes with the various technologies and 

products being in different stages of development. For the purposes of this analysis, a list of CO2-receiving 

processes has been compiled based on an extensive literature review and the TRL of each one has been 

determined. TRL is a systematic metric system used to assess the maturity level of a technology, which varies 

from 1 to 9, with 9 being the most mature process. The most promising processes have been selected for the 

estimation of the potential for CO2 utilization, based on the TRL and on their inclusion in previous mapping 

attempts, presented in Section 1.1. This initial screening was further limited in certain cases due to lack of 

data for the estimation of CO2 reuse potential. Table 1 summarizes all the CO2-receiving processes 



considered in this study. It also provides information on the type of CO2 use and the conversion factors, i.e. 

the ratio of CO2use per unit of product or per unit of raw material consumed. The following subsections 

present the three steps followed to estimate the regional potential for CO2 utilization in Europe. 

Table 1 Selected CO2 end receiving processes. 

alt-text: Table 1  

Industrial Process Type of use TRL Conversion Factor 

Lignin Production CO2 used in black Liquor pH 

regulation 

8–9 0.22 tCO2 per t of lignin 

produced [25] [43] 

Methanol 

Production 

Electrochemical reduction of CO2. 7 1.7 tCO2 per t of methanol 

produced [45] 

Polyurethane 

Production 

CO2 used as raw material to 

produce plastics and fibers 

7 0.1–0.3 tCO2 per t of 

polyols [41] 

Polycarbonate 

Production 

CO2 used as raw material to 

produce plastics and fibers 

7 0.43 tCO2 per t of PPC 

produced [8] 

Concrete Curing 

(Concrete blocks) 

CO2 used for precast concrete 

curing 

7–8 0.03 tCO2 per t of block 

produced 

0.12 tCO2 per t of precast 

concrete [13] 

Mineral 

Carbonation 

CO2 reacted with calcium or 

magnesium containing minerals 

7–8 0.25 tCO2 per t of steel slag [20] 

Bauxite Residue 

Carbonation 

CO2 is used to neutralize bauxite 

residues 

9 0.053 tCO2 per t of red mud [49] 

Horticulture 

Production 

CO2 supplementation on plant 

growth 

9 0.5–0.6 kgCO2/hr/100m2 [1] 

160 tCO2 per ha (for tomatoes in 

Sweden) [22] 

Urea production Urea production from ammonia 

and CO2 

9 0,74 tCO2 per t of Urea [19] 

 

2.1.1 CO2 potential for utilization at country level 

CO2 can be used in an industrial process either as a primary feedstock being its consumption 

proportional to the mass flow of the final product, or as a supplementary resource which reacts with a by-

product of the main industrial process and its consumption is proportional to the mass flow of the by-product. 

Thus, the total amount of goods produced each year at country level or the amount of by-products that are 

produced during the production/extraction of a specific material needs to be estimated for all processes 

described in Table 1. 

Industrial production is estimated using the Prodcom Database, provided by Eurostat, which 

includes statistics on the production of manufactured goods, and covers the mining, quarrying and 

manufacturing industries. The only exception is made when CO2 is used as nutrient in industrial-scale 

bioprocesses (e.g. in the case of horticultural production) where the amount of CO2 is proportional to the 

cultivated area and not to the final crop production. All the necessary values were collected from official 

publications and databases of various organizations and institutions. The following data sources were used 

to account the amounts of goods with CO2 use at a country level: 

 Industrial production classified by Prodcom codes disaggregated by EU28 Countries [17]. 



 Areas of crops under greenhouse areas disaggregated by EU28 Countries [18]. 

 Primary aluminium production at a country level, available in Nation Master [29] 

 Crude steel production at a country level, available in World Steel Association [47] 

The values collected were then combined with the conversion factors presented in Table 1 in order 

to estimate the annual potential for CO2 utilization at country level in Europe. 

2.1.2 Disaggregation at a regional level 

According to European Comission [15], both countries and regional authorities should design smart 

specialization strategies to take advantage of the knowledge-based growth and diversify into technologies or 

products that are closely related to existing dominant technologies. Based on this, concept the present study 

defines key regions as regions that can take advantage of the existing technologies to promote CCU. 

Therefore, the values accounted at country level were subsequently allocated into regions, by using the ratio 

of the number of workers within a specific economic activity in the region to the number of workers for the 

same activity at a country level. In the cases where the data on the number of employees was not available, 

the same approach was applied by using the number of establishments. All values were retrieved from the 

Regional Statistics Database of Eurostat [17,18]. 

2.2 Assessing CO2 availability 

The quantification of the CO2 emissions for each region is based on the Regulation (EC) No 

166/2006 of the European Parliament and of the Council, which establishes an integrated pollutant release 

and transfer registry at Community level (the European PRTR). Every year EU companies are required to 

report their emissions, if they exceed a certain threshold for the pollutants. For the case of CO2 emissions, 

the limit from which the emissions have to be reported is 100 million kg/year to air. According to the 

European PRTR the thresholds are designed to capture 90% of European industrial releases [34]. Data was 

collected from the E-PRTR database, which covers all the values reported in 2013 for all EU Member States, 

Iceland, Liechtenstein, Norway, Serbia and Switzerland [16]. Based on this database, the total amount of 

CO2 emissions released by stationary sources in 2013 is estimated. The CO2 emissions at a facility level were 

aggregated into regional and national level. These values include both fossil fuels origin as well as biomass 

origin CO2. 

2.3 Matching availability and utilization potential 

The last step of the proposed approach is to match the amount of available CO2 per region with the 

potential for the utilization of CO2. The matching is performed both on a country level and on a regional level 

and is done in absolute values, by comparing the total amount of CO2 emitted by industrial sources, with the 

total amount of CO2 that potentially could be utilized. The analysis on a country level helps to filter the 

countries and identify those with the most favourable quantitative characteristics for the development of CCU 

schemes. Such a screening can be useful to policy makers and decision makers in order to efficiently promote 

the development and the implementation of such schemes. The analysis on a regional level allows to narrow 

down the geographical area and could be helpful both for the industries searching for a partner and for 

technology developers, who could promote their innovations in a more targeted way. 

2.4 Limitations 

Industrial production data at the country level was not always available. In some cases, the data is 

confidential, when for example there is only one producer per country. Moreover, the maximum potential for 

CCU has been estimated by combining the annual CO2 availability with the CO2 quantity requirements for 

each process. However, these estimates include significant uncertainty because the CO2 requirements for 

each conversion process represent an average value based on the most common product or the most 

technologically advanced process. The disaggregation into regional level is done using Eurostat data, only 

available at NACE 2 Digits (Sector Level), which for some cases can be considered as not detailed enough. 

Some of the promising CO2-feedstock receiving processes were not included due to lack of data. 

This is for instance the case of the power to gas technology. For this particular technology it was not possible 

to estimate the amount of CO2 that could be utilized. 

In this analysis, CO2 emissions do not include minor industrial sources that emit less than 

0.1 MtCO2per year. Despite the fact that minor sources contribute with only about 10% of the industrial 



emissions in the EU, some of them may represent an important source of CO2 due to the high concentration 

of CO2 in the effluent stream (such as fermentation plants, breweries. ethylene oxide industries or biogas 

purification plants). Furthermore, no additional capture/purification/treatment technologies are required. It is 

also cheaper to collect CO2 from several small sources into a single pipeline than to transport smaller amounts 

separately. 

The disaggregation at a regional level is done using the number of workers as reference parameter, 

an approach that showed to be efficient for regional data amputations [31]. Nevertheless, there are some 

drawbacks of using this approach, since industrial production also depends on other criteria such as the 

technology or market. The advantage of using the number of employees is that it is a commonly available 

figure in a detailed listing [37]. 

Finally, the environmental impact assessment of implementing a CCU technology is not included 

in the current analysis. For that purpose, it would be necessary to conduct a Life Cycle Assessment to properly 

evaluate the environmental impacts on a case by case basis and evaluate the importance of other critical 

variables such as the durability of the CO2 in the new product or the potential substitution of raw materials 

by CO2. However, this goes beyond the scope of this paper. 

3 Results 

3.1 Analysis on a national level 

3.1.1 Availability of CO2 

In total, 1913 MtCO2 were emitted in 2012 at a European level by 2215 stationary industrial sources. 

935 were thermal power stations and other combustion installations, which were responsible for emitting 

60% of the total amount of CO2. Oil and gas refineries and installations for the production of pig iron or steel 

(108 and 65 facilities respectively) emitted 7% and 5%. The majority of the emissions occurred in Germany 

(454.6 MtCO2), United Kingdom (221.2 MtCO2), Poland (192.3 MtCO2) and Italy (154.1 MtCO2) (Fig. 2a). 

The emissions from these countries represent more than 50% of the total CO2 emissions. 



 
Fig. 2 Matching (a) CO2 availability and (b) potential for CO2 utilization on a Country level. 

alt-text: Fig. 2  

3.1.2 Potential for CO2 utilization 

The following sections present a brief analysis for each one of the CO2 receiving processes. 

3.1.2.1 Methanol production 

This category includes the production of methanol (Prodcom Code: 20.14.22.10). Currently, 

methanol is mostly manufactured from synthesis gas that is a mixture of carbon monoxide and hydrogen, 

which is produced by using natural gas as feedstock. Germany is the country with the highest methanol 

production in Europe (1.0 Mt), with its share reaching 65% of the total European Production (1.5 Mt) [17,18]. 

Based on the conversion factors presented in Table 1 (i.e. for every tonne of methanol produced, 1.375 t of 

CO2 will typically be consumed) the maximum annual mass flow of CO2 that would be required in order to 

produce methanol in Germany would exceed 1.3 MtCO2 whereas in Europe would reach 2.0 MtCO2. 

3.1.2.2 Urea production 

This category includes the production of urea containing >45% by weight of nitrogen on the dry 

anhydrous product (excluding in tablets or similar forms or in packages of a weight of less than 10 kg) 

(Prodcom Codes: 20.15.31.30 and 20.15.31.80). Urea can be used as solid nitrogen fertilizer or as feedstock 

by several chemical industries. Instead of using a source for capture CO2, urea is commonly produced using 

coal-based products [4]. The market for urea production is slightly more balanced since 4 countries 

(Romania, Poland, Germany and Lithuania) share 75% of the annual European production, which reaches 



2.5 Mt [17,18]. Given these values, the maximum annual potential of CO2 utilization for urea production in 

Europe would exceed 3.9 MtCO2. 

3.1.2.3 Production of ethylene and propylene polymers 

CO2 can be used as feedstock to replace the current petroleum derived products used for polymers 

production. This category includes the production of polymers of ethylene (Prodcom Code: 20.16.10.39 and 

20.16.10.50), propylene or other olefins (Prodcom Codes: 20.16.51.30 and 20.16.51.50), in primary forms. 

The total amount of these polymers produced in Europe is approximately 19.4 Mt and national confidential 

values represent almost 23%. Among the available values, Belgium and Germany are the greater producers 

with respective shares (and quantities) 26% (3.9 Mt) and 23% (3.5 Mt) [17,18]. Assuming that the only 

polymers produced are polyethylene carbonate (PEC) and polypropylene carbonate (PPC), then the 

maximum annual mass flow of CO2 that would be required in order to produce polymers in Europe would 

reach 8.3 MtCO2. These estimates are probably less accurate compared to the other processes, due to the vast 

amount of polymers and the different production processes that can be applied. However, even such a rough 

estimation can indicate the countries where the analysis should be targeted. 

3.1.2.4 Polyurethane production 

The production of polyurethanes in primary forms (Prodcom code 20.16.56.70) is considered in this 

category. The annual production of polyurethanes in Europe is just over 3.0 Mt with Germany (40%), 

Belgium (24%) and Italy (13%) dominating the market [17,18]. An average estimation of the annual mass 

flow of CO2 that would be required in order to produce polyurethanes in Europe would be approximately 

0.25 MtCO2. 

3.1.2.5 Bauxite residue carbonation 

Bauxite residue carbonation process involves the addition of CO2 to the highly alkaline bauxite 

residue slurry (also known as “red mud”), which is the waste stream of the extraction of alumina from bauxite 

ore. Currently bauxite residue is classified by the European List of Waste as a non-hazardous waste and is 

normally disposed in landfills Dentoni, 2014. Bauxite residue carbonation would permit to produce a more 

stable material, which could be used in the construction sector. The addition of CO2 can reduce pH and 

simultaneously can lead to CO2 sequestration. According to estimates, approximately 0.82 tonnes of red mud 

are generated per tonne of alumina produced [24]. Various estimates can be found in the literature about the 

amount of CO2 that is absorbed per tonne of red mud, ranging from 30 to 750 kg CO2/t red mud. For the 

purposes of the analysis, a relatively pessimistic value, proposed by Yadav et al. [49], will be used, equal to 

53 kgCO2 per tonne of red mud. This results in a lower potential for CO2 utilization in Europe, around 

0.22 MtCO2. However, this estimation may increase by a factor of 10 (and reach 2.5 MtCO2) if a more 

optimistic assumption is used. Concerning the spatial analysis, Norway is by far in the first place (with its 

share surpassing 27%) while Iceland and Germany follow with shares around 13–14% Nation Master, 2012. 

3.1.2.6 Mineral carbonation 

Mineral carbonation involves the formation of solid carbonate products, based on a reaction between 

carbon dioxide and alkaline/alkaline-earth oxides, which can be found both in naturally occurring silicate 

rocks and in numerous sources of industrial waste, such as metallurgic slags, incineration ashes and mining 

tailings. For the purposes of this analysis, a rough estimation of the available potential for CO2 utilization is 

made based on the estimated produced slag from the annual iron & steel production. The required data have 

been retrieved from the World Steel Association database [47]. It is assumed that in the course of liquid steel 

production in a basic oxygen furnace, for every ton of crude steel, about 100–150 kg of slag are generated in 

the form of waste, depending on the quality of the hot metal and the steel making process [35]. Based on this 

assumption, the total potential for CO2 utilization is estimated approximately 5.3 MtCO2 per year. Germany 

is the leading country in this category with a share surpassing 25% whereas Italy and France are the other 

two countries with shares over 10%. It should be noted that the potential is definitely underestimated since 

only one (e.g. iron and steel industry) out of many possible industrial waste sources has been considered in 

the analysis. 

3.1.2.7 Concrete curing 

A CO2 stream can be used as a supplementary resource in the cement curing process in order to 

sequester CO2 in manufactured concrete products. The use of CO2 curing instead of the commonly used steam 

curing process allows the reduction of the energy consumption as well as the reduction of associated 



generation of CO2 [30,39]. Using the annual production of concrete blocks in Europe, the potential for 

CO2 utilization has been estimated. However, the potential is probably underestimated because although 

concrete blocks are the most widely used, long-lasting and cost-effective material used in building, they are 

not the only manufactured concrete product. The total estimated potential reaches 22.5 MtCO2 per year and 

the country shares are quite balanced, with four countries having shares between 9 and 15%; United Kingdom 

(14%), Poland (12%), Germany (9.5%) and France (9%). 

3.1.2.8 Lignin production 

Lignin can be extracted from black liquor, which is a by-product of the pulp mill industry. Lignin 

extraction will not only allow to produce a valuable product, but will also increase pulp production. 

CO2 needs to be added to the process in order to lower the pH of the black liquor. With the current technology, 

only high purity CO2 streams are used but research is under way towards the possibility of using directly 

CO2-containing flue gases [43]. According to estimates, approximately 0.3 tonnes of lignin may be produced 

per tonne of air dried pulp produced Manninen et al., 2010. Lignin production is estimated using the annual 

production of pulp in Europe [17,18]. Considering that 0.22 tCO2 is necessary to produce one tonne of 

lignin [43], the annual potential for CO2 utilization has been estimated at approximately 22.5 MtCO2 per year. 

Sweden and Finland are the two countries with higher potential, with a share of just over 30% each, while 

Germany, Portugal and Spain follow with a share of approximately 10% each. 

3.1.2.9 Horticultural production 

For the majority of greenhouse crops, the net photosynthesis increases following the increase of 

CO2 level in the air [28]. In general, when raising the CO2 level from ambient values, about 340 ppm, to 

1000 ppm, photosynthesis is improved by around 50% [1]. In Europe the production of vegetables (e.g. 

tomato, cucumber, sweet pepper) and fruits (e.g. watermelon, strawberries) in greenhouses represents 83% 

of the total greenhouse production area [17,18] while the remaining is used to produce flowers and 

ornamental plants. CO2 utilization in Europe has been estimated using Eurostat data on the greenhouse 

cultivated area as well as a reference value of the amount of CO2 required for the production of tomatoes 

(160 tCO2 per ha of cultivated area). Tomato has been used as the representative plantation, since it is the 

vegetable which is more commonly produced in greenhouses in Europe. The estimated annual potential for 

CO2utilization in greenhouses is approximately 22.0 MtCO2. Spain, Italy and the Netherlands are the 

countries with the highest potential with a share of 33%, 28% and 7%, respectively. 

3.1.3 Overview 

Table 2 presents the total amount of CO2 that can be utilized by each industrial process in Europe. 

According to the results the most promising industrial technology is concrete curing with 22.5 MtCO2, 

followed by horticulture production (22.0 MtCO2) and lignin production (8.4 MtCO2). There are other 

industrial processes with high potential for CO2 capture and utilization that are not included in the Table. 

This is for instance the case of Power-to-Gas (PtG) that consists in converting surplus of energy into an 

energy carrier such as methane or methanol. Several demonstration projects can be found in Europe, 

especially in Germany with 20 plants operating in 2015 [9]. The largest project is located in Werlte-Germany 

(6 MW plant). Production of algae using CO2 has also a limited market in Europe, but has very good 

perspectives to grow in the future, either to produce bio-fuels or other valuable products such as 

pharmaceutical or cosmetics. For both technologies the prediction of current potential CO2 utilization in the 

current time is considered as inaccurate and therefore not considered further in the study. 

It should be noted that all three technologies with the higher estimated potential can be found in the 

latter end of the innovation cycle, towards the adoption phase. They are all characterized by high TRL, 

namely horticultural production: 9, lignin production: 8–9, concrete curing: 7–8) and are only a few steps 

before commercialization, if not reached yet. Thus, in terms of innovation policy and practice, not many 

efforts related to fundamental science are required for their development. By contrast, local governments as 

well as national and European funding bodies could contribute significantly to the deployment of these 

options by targeting two relevant policy options. First, they are well placed to encourage the development of 

pilot and demonstration plant, which will allow such technologies to be tested and more widely adopted by 

increasing investor confidence. Second, public procurement could be considered to provide economies of 

scale to the emerging value chains and in particular to the new CO2 end-receiving processes. 

 



Table 2 Potential CO2 utilization in Europe by industrial process. 
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Industrial Process CO2 Utilization (Mtpa) 

Concrete curing 22.5 

Horticulture production 22.0 

Lignin production 8.4 

Ethylene and propylene Polymers 8.3 

Mineral carbonation 5.3 

Urea 3.9 

Methanol 2.0 

Polyurethane 0.3 

Bauxite Residue Carbonation 0.2 

It is important to highlight that the same applies to a large extent to all the technologies assessed in 

the current paper. The methodological design stated that only technologies with high TRL (>7) were included 

in the estimation of the medium-term EU potential. However, there is a wide range of other CO2 reuse 

technologies with much lower TRL (2-–5), where the discussion of innovation theory and practice for their 

gradual adoption, would require a much broader approach to policy analysis according to the different 

alternatives in earlier stages of the innovation life-cycle, which is out of the scope of the present paper. 

Fig. 2b maps the maximum potential for CO2 utilization on a European level. It is apparent from the 

analysis that Germany is the country with the greatest potential, since it features among the top countries in 

almost all examined processes. Evidently, it is the preferred candidate for the development of partnership 

schemes focusing on the reuse of carbon dioxide, because it has a diverse range of conversion processes and 

can therefore absorb flows of different magnitude and purity. However, Germany should not be the sole focus 

of the analysis for developing successful CCU initiatives. Other countries with high potential are also 

included in the analysis, taking into account their specific characteristics. Sweden and Finland, for example, 

feature among the top countries with almost 3Mtpa each for the examined processes. However, the majority 

of the potential is related to lignin production, which at the moment requires high purity streams. By contrast, 

UK, France, Belgium and Poland are four countries with a more balanced CO2 demand and can absorb flows 

of diverse purity and magnitude. 

By comparing Fig. 2a and b, it is apparent that the countries with the larger quantities of emitted 

and available CO2 and the greatest potential for CO2 utilization in the nine selected processes are Germany, 

UK and France as the most promising followed by Spain, Italy and Poland. The fact that the countries with 

the largest emissions also have the highest potential for utilizing the CO2, may potentially allow maintaining 

industrial production at the current level while simultaneously decreasing the net CO2 emissions, by recycling 

CO2 in the same region. However, the current potential for utilization is two orders of magnitude lower than 

the emissions. Therefore, a dramatic increase in CO2 utilization capacity is required in order to decrease the 

net CO2 emissions significantly. 

3.2 Analysis on a regional level 

The estimation of the potential utilization per country is useful, because it can guide decision makers 

and policy makers on a European level to identify countries, which should be the focus for the development 

of carbon dioxide reuse schemes. However, industrial stakeholders and technology developers require a more 

detailed analysis that narrows down the geographical area, where the former could find potential users/buyers 

of the carbon dioxide that they produce and the latter could promote relevant capture and purification 



technologies. Moreover, a more detailed mapping will help to identify key regions where (a) the methodology 

could be applied and a more detailed and case-specific analysis is necessary and (b) relevant potentially 

interested stakeholders could be sought. 

 
Fig. 3 Matching (a) CO2 availability and (b) potential for CO2 utilization on a regional level. 
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Fig. 3 presents the CO2 availability and the potential for the utilization of CO2 on a regional level. 

A first observation from the comparison of the two maps is that the amount of available CO2 is greater than 

the potential for CO2 utilization in all regions. This proportion is expected, since the CO2 availability includes 

all the large scale sources (without examining the feasibility of installing carbon capture technology) whereas 

the estimation of the potential for CO2 utilization is based only on nine selected CO2 receiving processes. 

However, the difference in the values is significant and it is almost certain that availability will be in most 



cases far greater than utilization. Thus, the identification of the candidate regions for the development of 

CCU schemes should be mainly based on the existing utilization for CO2. 

The regions of Dusseldorf and Cologne (in North Rhine-Westphalia, Germany), Antwerp Province 

and East Flanders (in Vlaams Gewest, Belgium), Cataluña (in Este, Spain) and Śląskie (Silesia) in Poland 

are the six most promising regions in terms of both CO2 availability and potential of CO2 utilization. All of 

them are regions with significant industrial and/or port activities. The two regions of North Rhine-Westphalia 

(NRW) are expected to be among the most prominent candidates, since NRW is one of the most important 

industrial regions in Europe and one of the most important economical areas in the world. It also hosts 

CleanTechNRW, an industrial cluster aiming to accentuate innovative potential and reduce CO2 emissions 

across four industrial sectors, energy, steel, chemistry and biotechnology [5]. On the contrary, Vlaams 

Gewest in Belgium and Este in Spain host some of the most important ports in Europe (port of Antwerp and 

ports of Valencia, Barcelona and Tarragona respectively). 

Moreover, the regions of Lombardia in Italy, Oberbayern (Upper Bavaria, with the Bavaria chemical 

cluster) in Germany, Łódzkie in Poland, South Holland and North Braband in the Netherlands and the 

southern part of Finland (specifically Etelä-Suomi and Helsinki-Uusimaa) have been identified as favourable 

regions for the development of CCU schemes. 

It should be pointed out that there are no regions which combine both high availability and high 

utilization potential (or at least the same level compared to the other countries) in France or the UK, two of 

the most developed economies and industrialized countries in Europe. However, there are a few regions with 

either high availability (e.g. Yorkshire and The Humber and East Midlands in the UK) or high potential 

utilization (e.g. Île de France). This may be explained from the fact that the nine selected CO2 receiving 

processes are not significant for the industrial sector of those two countries or that the industrial sector is 

equally spread among all regions and no particular one stands out (although both countries were among those 

highlighted in the country-level analysis). 

More detailed information is shown in Supplementary Iinformation, where the total amounts of 

available CO2 as well the potential uptake, for each country and region are highlighted. As stated before, this 

study was performed to identify the total amounts of CO2 available and the potential CO2 utilization, both 

for countries and regions in Europe. Therefore, more populated countries or regions are more susceptible to 

have higher results. A comparison between countries or regions should be done based on the CO2 reuse 

potential per capita (MtCO2/capita) and on per available area (MtCO2/km2) for each region. 

4 Conclusions and suggestions for further research 
The current paper has presented a methodological approach in order to estimate the regional 

potential for utilization of CO2 and to compare it with the distribution of available CO2 due to industrial 

emissions. The annual amount of CO2 released by industrial sources in Europe was approximately 

1900 MtCO2 while the potential utilization could reach 51 MtCO2, based on nine selected technologies, 

which represents 2.8% of the total amount of CO2 available. The results are in line with other recent 

studies [26], thus indicating that currently CCU can play a small role as a part of a wider strategy for carbon 

emissions reduction. There is a need to continue developing and testing emerging CCU technologies as well 

as other CCU technologies that are in an early stage of fundamental research [33]. Additionally, CCU should 

be considered a complementary strategy to other policies and sequestration options, such as CCS. 

The study has shown that the countries with the largest emissions also have the highest potential for 

utilizing the CO2, with Germany, United Kingdom and France being the most promising followed by Spain, 

Italy and Poland. A more detailed analysis has also revealed several regions where CO2 reuse schemes could 

be developed. The majority of them are located in Central Europe (Germany, Belgium and Poland) and 

Scandinavia (Sweden and Finland). These regions may take advantage of the available resources as well as 

technologies to increase the industrial production and decrease the dependence on fossil fuels based materials 

while simultaneously decreasing the net CO2 emissions, by recycling CO2 in the same region. 

The regions of Dusseldorf and Cologne (in North Rhine-Westphalia, Germany), Antwerp Province 

and East Flanders (in Vlaams Gewest, Belgium), Cataluña (in Este, Spain) and Śląskie (in Poland) are the 

six most promising regions in terms of both CO2 availability and potential of CO2 utilization. Other promising 

regions can be found in Poland (Łódzkie), Finland (Etelä-Suomi and Helsinki-Uusimaa), Italy (Lombardia) 

and The Netherlands (South Holland and North Braband). 



However, the application of the approach has also revealed some of its weaknesses. The fact that 

the main criterion for the definition of a region is its population has led to an overestimation of the potential 

of sparsely populated regions (such as Finland or Northern Sweden) and could also lead to the 

underestimation of the potential of small but densely populated regions. In order to resolve this issue two 

more maps will be created, based on the CO2 reuse potential per capita (MtCO2/capita) and on per available 

area (MtCO2/km2) for each region. 

Concerning CO2 availability, the small scale sources should be also included in the analysis. 

Although such sources may not play a significant role in the CO2 emissions abatement if they are examined 

separately, they have some characteristics that can be very critical to the development of successful business 

models. They can be treated as an add-on to large scale sources and multiple small scale sources can be 

located close to each other thus providing opportunities for clustering. Moreover, small scale sources can be 

located closer to the CO2 sink, and thus reducing the transport cost. Furthermore, the most popular carbon 

capture technologies are already proven on a small scale. Thus, their mapping is a necessary step towards 

their inclusion in a potential CO2 reuse scheme. 

A suggestion for future work would be to perform an uncertainty analysis of the obtained results. It 

would be also interesting to do a techno economic analysis of the necessary changes in the current 

infrastructure so that CO2 could be used as raw material for each technology. Concerning the estimation of 

the CO2 utilization potential, a couple of promising technologies (with relatively high TRL) but without any 

significant installed industrial unit across Europe, such as algae production were left out of the analysis 

intentionally, because the objective of the paper was to assess the current potential. In a next step of the 

analysis, our results could be combined with forecasts about the evolution of the involved industrial sectors 

in order to estimate not only the current but also the future potential for utilization. 

Finally, a more detailed and case specific analysis should be performed for the most prominent 

regions. A high purity demand vs. low purity demand map should be created to highlight the requirements 

for specific capture and purification technologies and also, by comparing it with the available CO2, the 

possibility and the feasibility to develop a reuse scheme. 
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