25 research outputs found

    Predictors of long time survival after lung cancer surgery. A retrospective cohort study.

    Get PDF
    Background: There have been few reports regarding long time survival after lung cancer surgery. The influence of age and pulmonary function on long time survival is still not fully discovered. Some reports suggest that hospitals with a high surgical volume have better results. The aim of this study was to evaluate lung cancer surgery performed in a county hospital in terms of 30 days mortality, complications and predictors of long time survival. Methods: All patients operated with non-small cell lung cancer in the period 1993–2006 were reviewed, and 148 patients were included in the study. 30 days mortality and complications were analyzed by univariate analysis. Kaplan Meier plots were performed to display some of the univariate variables. Cox regression analysis was performed to find Hazard Ratios (HR) that predicted long time survival in univariate and multivariate analysis. Results: The overall 30 days mortality rate was 2.7%, whereas 36.3% had one or more complications after surgery. The median survival time was 3.4 years. In multivariate Cox regression analysis advanced preoperative stage predicted reduced long time survival with HR (95%CI) 1.63 (0.92, 2.89) and 4.16 (1.92, 9.05) for patients in stage IB and II-IV respectively, when compared to patients in stage IA. Age ≥ 70 years and FEV1<80% predicted reduced long time survival with HR (95%CI) 2.23 (1.41, 3.54) and 1.93 (1.14, 3.28) respectively, compared to age<70 years and FEV1 ≥ 80%. Conclusion: Thirty days mortality and complication rate showed that lung cancer surgery can be performed safely in a county hospital with experienced thoracic surgeons. Early preoperative stage, age below 70 years and normal pulmonary function predicted long time survival.publishedVersio

    Predictors of diagnostic yield in bronchoscopy: a retrospective cohort study comparing different combinations of sampling techniques

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The reported diagnostic yield from bronchoscopies in patients with lung cancer varies greatly. The optimal combination of sampling techniques has not been finally established.</p> <p>The objectives of this study were to find the predictors of diagnostic yield in bronchoscopy and to evaluate different combinations of sampling techniques.</p> <p>Methods</p> <p>All bronchoscopies performed on suspicion of lung malignancy in 2003 and 2004 were reviewed, and 363 patients with proven malignant lung disease were included in the study. Sampling techniques performed were biopsy, transbronchial needle aspiration (TBNA), brushing, small volume lavage (SVL), and aspiration of fluid from the entire procedure. Logistic regression analyses were adjusted for sex, age, endobronchial visibility, localization (lobe), distance from carina, and tumor size.</p> <p>Results</p> <p>The adjusted odds ratios (OR) with 95% confidence intervals (CI) for a positive diagnostic yield through all procedures were 17.0 (8.5–34.0) for endobronchial lesions, and 2.6 (1.3–5.2) for constriction/compression, compared to non-visible lesions; 3.8 (1.3–10.7) for lesions > 4 cm, 6.7 (2.1–21.8) for lesions 3–4 cm, and 2.5 (0.8–7.9) for lesions 2–3 cm compared with lesions <= 2 cm. The combined diagnostic yield of biopsy and TBNA was 83.7% for endobronchial lesions and 54.2% for the combined group without visible lesions. This was superior to either technique alone, whereas additional brushing, SVL, and aspiration did not significantly increase the diagnostic yield.</p> <p>Conclusion</p> <p>In patients with malignant lung disease, visible lesions and larger tumor size were significant predictors of higher diagnostic yield, after adjustment for sex, age, distance from carina, side and lobe. The combined diagnostic yield of biopsy and TBNA was significant higher than with either technique alone.</p

    Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990-2015: a systematic analysis for the Global Burden of Disease Study 2015.

    Get PDF
    BACKGROUND: Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. METHODS: We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. FINDINGS: Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9-3·0) for men and 3·5 years (3·4-3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78-0·92) and 1·2 years (1·1-1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. INTERPRETATION: Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. FUNDING: Bill & Melinda Gates Foundation

    Measuring the health-related Sustainable Development Goals in 188 countries : a baseline analysis from the Global Burden of Disease Study 2015

    Get PDF
    Background In September, 2015, the UN General Assembly established the Sustainable Development Goals (SDGs). The SDGs specify 17 universal goals, 169 targets, and 230 indicators leading up to 2030. We provide an analysis of 33 health-related SDG indicators based on the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015). Methods We applied statistical methods to systematically compiled data to estimate the performance of 33 health-related SDG indicators for 188 countries from 1990 to 2015. We rescaled each indicator on a scale from 0 (worst observed value between 1990 and 2015) to 100 (best observed). Indices representing all 33 health-related SDG indicators (health-related SDG index), health-related SDG indicators included in the Millennium Development Goals (MDG index), and health-related indicators not included in the MDGs (non-MDG index) were computed as the geometric mean of the rescaled indicators by SDG target. We used spline regressions to examine the relations between the Socio-demographic Index (SDI, a summary measure based on average income per person, educational attainment, and total fertility rate) and each of the health-related SDG indicators and indices. Findings In 2015, the median health-related SDG index was 59.3 (95% uncertainty interval 56.8-61.8) and varied widely by country, ranging from 85.5 (84.2-86.5) in Iceland to 20.4 (15.4-24.9) in Central African Republic. SDI was a good predictor of the health-related SDG index (r(2) = 0.88) and the MDG index (r(2) = 0.2), whereas the non-MDG index had a weaker relation with SDI (r(2) = 0.79). Between 2000 and 2015, the health-related SDG index improved by a median of 7.9 (IQR 5.0-10.4), and gains on the MDG index (a median change of 10.0 [6.7-13.1]) exceeded that of the non-MDG index (a median change of 5.5 [2.1-8.9]). Since 2000, pronounced progress occurred for indicators such as met need with modern contraception, under-5 mortality, and neonatal mortality, as well as the indicator for universal health coverage tracer interventions. Moderate improvements were found for indicators such as HIV and tuberculosis incidence, minimal changes for hepatitis B incidence took place, and childhood overweight considerably worsened. Interpretation GBD provides an independent, comparable avenue for monitoring progress towards the health-related SDGs. Our analysis not only highlights the importance of income, education, and fertility as drivers of health improvement but also emphasises that investments in these areas alone will not be sufficient. Although considerable progress on the health-related MDG indicators has been made, these gains will need to be sustained and, in many cases, accelerated to achieve the ambitious SDG targets. The minimal improvement in or worsening of health-related indicators beyond the MDGs highlight the need for additional resources to effectively address the expanded scope of the health-related SDGs.Peer reviewe

    Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015 : a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Improving survival and extending the longevity of life for all populations requires timely, robust evidence on local mortality levels and trends. The Global Burden of Disease 2015 Study (GBD 2015) provides a comprehensive assessment of all-cause and cause-specific mortality for 249 causes in 195 countries and territories from 1980 to 2015. These results informed an in-depth investigation of observed and expected mortality patterns based on sociodemographic measures. Methods We estimated all-cause mortality by age, sex, geography, and year using an improved analytical approach originally developed for GBD 2013 and GBD 2010. Improvements included refinements to the estimation of child and adult mortality and corresponding uncertainty, parameter selection for under-5 mortality synthesis by spatiotemporal Gaussian process regression, and sibling history data processing. We also expanded the database of vital registration, survey, and census data to 14 294 geography-year datapoints. For GBD 2015, eight causes, including Ebola virus disease, were added to the previous GBD cause list for mortality. We used six modelling approaches to assess cause-specific mortality, with the Cause of Death Ensemble Model (CODEm) generating estimates for most causes. We used a series of novel analyses to systematically quantify the drivers of trends in mortality across geographies. First, we assessed observed and expected levels and trends of cause-specific mortality as they relate to the Socio-demographic Index (SDI), a summary indicator derived from measures of income per capita, educational attainment, and fertility. Second, we examined factors affecting total mortality patterns through a series of counterfactual scenarios, testing the magnitude by which population growth, population age structures, and epidemiological changes contributed to shifts in mortality. Finally, we attributed changes in life expectancy to changes in cause of death. We documented each step of the GBD 2015 estimation processes, as well as data sources, in accordance with Guidelines for Accurate and Transparent Health Estimates Reporting (GATHER). Findings Globally, life expectancy from birth increased from 61.7 years (95% uncertainty interval 61.4-61.9) in 1980 to 71.8 years (71.5-72.2) in 2015. Several countries in sub-Saharan Africa had very large gains in life expectancy from 2005 to 2015, rebounding from an era of exceedingly high loss of life due to HIV/AIDS. At the same time, many geographies saw life expectancy stagnate or decline, particularly for men and in countries with rising mortality from war or interpersonal violence. From 2005 to 2015, male life expectancy in Syria dropped by 11.3 years (3.7-17.4), to 62.6 years (56.5-70.2). Total deaths increased by 4.1% (2.6-5.6) from 2005 to 2015, rising to 55.8 million (54.9 million to 56.6 million) in 2015, but age-standardised death rates fell by 17.0% (15.8-18.1) during this time, underscoring changes in population growth and shifts in global age structures. The result was similar for non-communicable diseases (NCDs), with total deaths from these causes increasing by 14.1% (12.6-16.0) to 39.8 million (39.2 million to 40.5 million) in 2015, whereas age-standardised rates decreased by 13.1% (11.9-14.3). Globally, this mortality pattern emerged for several NCDs, including several types of cancer, ischaemic heart disease, cirrhosis, and Alzheimer's disease and other dementias. By contrast, both total deaths and age-standardised death rates due to communicable, maternal, neonatal, and nutritional conditions significantly declined from 2005 to 2015, gains largely attributable to decreases in mortality rates due to HIV/AIDS (42.1%, 39.1-44.6), malaria (43.1%, 34.7-51.8), neonatal preterm birth complications (29.8%, 24.8-34.9), and maternal disorders (29.1%, 19.3-37.1). Progress was slower for several causes, such as lower respiratory infections and nutritional deficiencies, whereas deaths increased for others, including dengue and drug use disorders. Age-standardised death rates due to injuries significantly declined from 2005 to 2015, yet interpersonal violence and war claimed increasingly more lives in some regions, particularly in the Middle East. In 2015, rotaviral enteritis (rotavirus) was the leading cause of under-5 deaths due to diarrhoea (146 000 deaths, 118 000-183 000) and pneumococcal pneumonia was the leading cause of under-5 deaths due to lower respiratory infections (393 000 deaths, 228 000-532 000), although pathogen-specific mortality varied by region. Globally, the effects of population growth, ageing, and changes in age-standardised death rates substantially differed by cause. Our analyses on the expected associations between cause-specific mortality and SDI show the regular shifts in cause of death composition and population age structure with rising SDI. Country patterns of premature mortality (measured as years of life lost [YLLs]) and how they differ from the level expected on the basis of SDI alone revealed distinct but highly heterogeneous patterns by region and country or territory. Ischaemic heart disease, stroke, and diabetes were among the leading causes of YLLs in most regions, but in many cases, intraregional results sharply diverged for ratios of observed and expected YLLs based on SDI. Communicable, maternal, neonatal, and nutritional diseases caused the most YLLs throughout sub-Saharan Africa, with observed YLLs far exceeding expected YLLs for countries in which malaria or HIV/AIDS remained the leading causes of early death. Interpretation At the global scale, age-specific mortality has steadily improved over the past 35 years; this pattern of general progress continued in the past decade. Progress has been faster in most countries than expected on the basis of development measured by the SDI. Against this background of progress, some countries have seen falls in life expectancy, and age-standardised death rates for some causes are increasing. Despite progress in reducing age-standardised death rates, population growth and ageing mean that the number of deaths from most non-communicable causes are increasing in most countries, putting increased demands on health systems. Copyright (C) The Author(s). Published by Elsevier Ltd.Peer reviewe

    Bronchoscopy of lesions suspicious of malignancy: Predictors of a higher diagnostic yield, the optimal combination of sampling techniques, and evaluation of endobronchial ultrasound with a rotating miniprobe. A retrospective cohort study and a prospective open randomised real-life study among physicians with various levels of experience

    Get PDF
    Aims (1) To evaluate various predictors for a higher diagnostic yield in bronchoscopy (2) To evaluate different combinations of sampling techniques in bronchoscopy of endobronchial visible lesions and peripheral lesions not visible by bronchoscopy (3) To evaluate endobronchial ultrasound (EBUS) with a rotating miniprobe for localisation of peripheral lesions in a real-life situation among pulmonologists at various levels of expertise Methods I: A retrospective cohort study evaluated the results in the study centre before the introduction of EBUS. The study searched for predictors of a higher diagnostic yield and evaluated different combinations of sampling techniques. All 1438 bronchoscopies performed in 2003 and 2004 at Haukeland University Hospital, Bergen, Norway, were retrospectively reviewed and 363 patients with proven malignant lung disease were included in the study. Sex, age, endobronchial visibility, location (lobe), distance from the carina and tumour size were evaluated as possible predictors for a higher detection rate for cancer. Sampling techniques performed were biopsy, transbronchial needle aspiration (TBNA), brushing, small volume lavage (SVL), and aspiration of fluid from the entire procedure. The predictors of a higher detection rate were analysed in bivariate analyses and in multivariate logistic regression. McNemars test compared different combinations of sampling techniques. A cost-minimisation analysis evaluated different combinations of sampling techniques for visible lesions. II: A prospective open randomised trial evaluated EBUS for peripheral lesions and searched for the optimal combination of sampling techniques in peripheral lesions. The study period was from 2005 to 2008 at Haukeland University Hospital and 7 Aalesund Hospital, Norway. The included 264 patients had peripheral lesions on the CT scan and no obvious endobronchial visible tumour on bronchoscopy. A simple randomisation without stratification assigned the patients to either EBUS or conventional bronchoscopy without EBUS. EBUS was performed with a 1.7 mm rotating probe with guide sheath. The study protocol recommended fluoroscopy for both study arms. An intention-to-treat analysis evaluated EBUS and a multivariate analysis was performed to avoid confounding. A cost-effectiveness analysis evaluated different combinations of biopsy, brushing, TBNA and washing. Results The detection rate for cancer in the retrospective study was 17 % in patients with no endobronchial visible lesions, 34 % in patients with endobronchial constriction or compression and 77 % in patients with endobronchial visible lesions. The multivariate logistic regression analysis retained endobronchial visibility and size as significantly predictors of a higher detection rate for cancer. Biopsy and brushing combined with endobronchial needle aspiration (EBNA) was the most economical combination of sampling techniques for endobronchial lesions in a cost-minimisation analysis. The detection rate for cancer in the prospective study was 36 % in the EBUS group and 44 % in the non-EBUS group (ns). The prospective study included only patients without endobronchial visible lesions. There was a significant interaction between size and randomisation to EBUS. Patients with lesions below 3 cm had a significantly higher detection rate in the non-EBUS group. Lesions visualised by EBUS had a higher detection rate for cancer than lesions not visualised by EBUS (62 % vs. 19 %, p<0.01). The cost of one additional positive sample was 1211 euro when brushing was added to biopsy. Based on a willingness to pay of 2800 euro for an additional positive sample, biopsy and brushing was the most cost-effective combination of sampling techniques for lesions not visible by bronchoscopy. The addition of TBNA or washing had cost-effectiveness ratios above 2800 euro. 8 Conclusions 1) Endobronchial visibility and lesion size were significant predictors of a higher detection rate for cancer in bronchoscopy. 2) For visible lesions, biopsy and brushing combined with EBNA was the most economical combination of sampling techniques. For lesions not visible by bronchoscopy, biopsy together with brushing was the most cost-effective combination of sampling techniques. 3) Overall, EBUS did not increase the detection rate for cancer in peripheral lesions when pulmonologists at various levels of expertise performed the bronchoscopies. However, visualisation by EBUS predicted a high detection rate for cancer

    Expert opinion of mediastinal lymph node positions from an intrabronchial view

    Get PDF
    Background The knowledge of the mediastinal lymph node positions from an intrabronchial view was important for conventional transbronchial needle aspiration (TBNA). The introduction of endobronchial ultrasound guided transbronchial needle aspiration (EBUS-TBNA) changed the focus from the intrabronchial landmarks to the real life ultrasound images. However when all EBUS reachable lymph nodes are evaluated (mapping), the knowledge of the intrabronchial positions is crucial. The objective of this study was to present a new expert opinion map from an intrabronchial perspective validated by an interobserver variation analysis. Methods Physicians who had performed more than 30 EBUS-TBNA were included. They marked areas for optimal TBNA sampling on standardized pictures from an intrabronchial perspective. Areas marked by more than 3 of the 14 experts who had performed more than 1000 EBUS provided the data for the map. The map was validated among the experts and the agreement was compared to the agreement among less experienced physicians. Results There was high agreement (>80 %) among the experts in lymph node positions 4 L, 7, 10 L, 11R and 11 L. The agreement for 4R and 10R was low (<70 %). The agreement among the most experienced physicians was significantly higher than the less experienced physicians in station 10 L (92 % vs. 50 %, p:0.01). Conclusions It was possible to present a new map of expert opinion for optimal sampling positions in lymph node stations 4 L, 4R, 7, 10 L, 11R and 11 L. All positions except 4R had high agreement. No area was covered by more than 3 of the 14 experts in station 10R

    Predictors of long time survival after lung cancer surgery. A retrospective cohort study.

    Get PDF
    Background: There have been few reports regarding long time survival after lung cancer surgery. The influence of age and pulmonary function on long time survival is still not fully discovered. Some reports suggest that hospitals with a high surgical volume have better results. The aim of this study was to evaluate lung cancer surgery performed in a county hospital in terms of 30 days mortality, complications and predictors of long time survival. Methods: All patients operated with non-small cell lung cancer in the period 1993–2006 were reviewed, and 148 patients were included in the study. 30 days mortality and complications were analyzed by univariate analysis. Kaplan Meier plots were performed to display some of the univariate variables. Cox regression analysis was performed to find Hazard Ratios (HR) that predicted long time survival in univariate and multivariate analysis. Results: The overall 30 days mortality rate was 2.7%, whereas 36.3% had one or more complications after surgery. The median survival time was 3.4 years. In multivariate Cox regression analysis advanced preoperative stage predicted reduced long time survival with HR (95%CI) 1.63 (0.92, 2.89) and 4.16 (1.92, 9.05) for patients in stage IB and II-IV respectively, when compared to patients in stage IA. Age ≥ 70 years and FEV1<80% predicted reduced long time survival with HR (95%CI) 2.23 (1.41, 3.54) and 1.93 (1.14, 3.28) respectively, compared to age<70 years and FEV1 ≥ 80%. Conclusion: Thirty days mortality and complication rate showed that lung cancer surgery can be performed safely in a county hospital with experienced thoracic surgeons. Early preoperative stage, age below 70 years and normal pulmonary function predicted long time survival
    corecore