70 research outputs found
New primers for promising single-copy genes in fungal phylogenetics and systematics
Developing powerful phylogenetic markers is a key concern in fungal phylogenetics. Here we report degenerate primers that amplify the single-copy genes Mcm7 (MS456) and Tsr1 (MS277) across a wide range of Pezizomycotina (Ascomycota). Phylogenetic analyses of 59 taxa belonging to the Eurotiomycetes, Lecanoromycetes, Leotiomycetes, Lichinomycetes and Sordariomycetes, indicate the utility of these loci for fungal phylogenetics at taxonomic levels ranging from genus to class. We also tested the new primers in silico using sequences of Saccharomycotina, Taphrinomycotina and Basidiomycota to predict their potential of amplifying widely across the Fungi. The analyses suggest that the new primers will need no, or only minor sequence modifications to amplify Saccharomycotina, Taphrinomycotina and Basidiomycota
Unravelling the phylogenetic relationships of lichenised fungi in Dothideomyceta
We present a revised phylogeny of lichenised Dothideomyceta
(Arthoniomycetes and Dothideomycetes) based on a combined
data set of nuclear large subunit (nuLSU) and mitochondrial small subunit
(mtSSU) rDNA data. Dothideomyceta is supported as monophyletic with
monophyletic classes Arthoniomycetes and Dothideomycetes;
the latter, however, lacking support in this study. The phylogeny of
lichenised Arthoniomycetes supports the current division into three
families: Chrysothrichaceae (Chrysothrix),
Arthoniaceae (Arthonia s. l., Cryptothecia,
Herpothallon), and Roccellaceae (Chiodecton, Combea,
Dendrographa, Dichosporidium, Enterographa, Erythrodecton, Lecanactis,
Opegrapha, Roccella, Roccellographa, Schismatomma, Simonyella). The
widespread and common Arthonia caesia is strongly supported as a
(non-pigmented) member of Chrysothrix. Monoblastiaceae, Strigulaceae,
and Trypetheliaceae are recovered as unrelated, monophyletic clades
within Dothideomycetes. Also, the genera Arthopyrenia
(Arthopyreniaceae) and Cystocoleus and Racodium
(Capnodiales) are confirmed as Dothideomycetes but unrelated
to each other. Mycomicrothelia is shown to be unrelated to
Arthopyrenia s.str., but is supported as a monophyletic clade sister
to Trypetheliaceae, which is supported by hamathecium characters. The
generic concept in several groups is in need of revision, as indicated by
non-monophyly of genera, such as Arthonia, Astrothelium, Cryptothecia,
Cryptothelium, Enterographa, Opegrapha, and Trypethelium in our
analyses
A class-wide phylogenetic assessment of Dothideomycetes
We present a comprehensive phylogeny derived from 5 genes, nucSSU, nucLSU
rDNA, TEF1, RPB1 and RPB2, for 356 isolates and 41
families (six newly described in this volume) in Dothideomycetes. All
currently accepted orders in the class are represented for the first time in
addition to numerous previously unplaced lineages. Subclass
Pleosporomycetidae is expanded to include the aquatic order
Jahnulales. An ancestral reconstruction of basic nutritional modes
supports numerous transitions from saprobic life histories to plant associated
and lichenised modes and a transition from terrestrial to aquatic habitats are
confirmed. Finally, a genomic comparison of 6 dothideomycete genomes with
other fungi finds a high level of unique protein associated with the class,
supporting its delineation as a separate taxon
Transoceanic Dispersal and Subsequent Diversification on Separate Continents Shaped Diversity of the Xanthoparmelia pulla Group (Ascomycota)
In traditional morphology-based concepts many species of lichenized fungi have world-wide distributions. Molecular data have revolutionized the species delimitation in lichens and have demonstrated that we underestimated the diversity of these organisms. The aim of this study is to explore the phylogeography and the evolutionary patterns of the Xanthoparmelia pulla group, a widespread group of one of largest genera of macrolichens. We used a dated phylogeny based on nuITS and nuLSU rDNA sequences and performed an ancestral range reconstruction to understand the processes and explain their current distribution, dating the divergence of the major lineages in the group. An inferred age of radiation of parmelioid lichens and the age of a Parmelia fossil were used as the calibration points for the phylogeny. The results show that many species of the X. pulla group as currently delimited are polyphyletic and five major lineages correlate with their geographical distribution and the biosynthetic pathways of secondary metabolites. South Africa is the area where the X. pulla group radiated during the Miocene times, and currently is the region with the highest genetic, morphological and chemical diversity. From this center of radiation the different lineages migrated by long-distance dispersal to others areas, where secondary radiations developed. The ancestral range reconstruction also detected that a secondary lineage migrated from Australia to South America via long-distance dispersal and subsequent continental radiation
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries1,2. However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world3 and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health4,5. However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol—which is a marker of cardiovascular risk—changed from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million–4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world
Global variation in diabetes diagnosis and prevalence based on fasting glucose and hemoglobin A1c
Fasting plasma glucose (FPG) and hemoglobin A1c (HbA1c) are both used to diagnose diabetes, but these measurements can identify different people as having diabetes. We used data from 117 population-based studies and quantified, in different world regions, the prevalence of diagnosed diabetes, and whether those who were previously undiagnosed and detected as having diabetes in survey screening, had elevated FPG, HbA1c or both. We developed prediction equations for estimating the probability that a person without previously diagnosed diabetes, and at a specific level of FPG, had elevated HbA1c, and vice versa. The age-standardized proportion of diabetes that was previously undiagnosed and detected in survey screening ranged from 30% in the high-income western region to 66% in south Asia. Among those with screen-detected diabetes with either test, the age-standardized proportion who had elevated levels of both FPG and HbA1c was 29-39% across regions; the remainder had discordant elevation of FPG or HbA1c. In most low- and middle-income regions, isolated elevated HbA1c was more common than isolated elevated FPG. In these regions, the use of FPG alone may delay diabetes diagnosis and underestimate diabetes prevalence. Our prediction equations help allocate finite resources for measuring HbA1c to reduce the global shortfall in diabetes diagnosis and surveillance
Repositioning of the global epicentre of non-optimal cholesterol
High blood cholesterol is typically considered a feature of wealthy western countries(1,2). However, dietary and behavioural determinants of blood cholesterol are changing rapidly throughout the world(3) and countries are using lipid-lowering medications at varying rates. These changes can have distinct effects on the levels of high-density lipoprotein (HDL) cholesterol and non-HDL cholesterol, which have different effects on human health(4,5). However, the trends of HDL and non-HDL cholesterol levels over time have not been previously reported in a global analysis. Here we pooled 1,127 population-based studies that measured blood lipids in 102.6 million individuals aged 18 years and older to estimate trends from 1980 to 2018 in mean total, non-HDL and HDL cholesterol levels for 200 countries. Globally, there was little change in total or non-HDL cholesterol from 1980 to 2018. This was a net effect of increases in low- and middle-income countries, especially in east and southeast Asia, and decreases in high-income western countries, especially those in northwestern Europe, and in central and eastern Europe. As a result, countries with the highest level of non-HDL cholesterol-which is a marker of cardiovascular riskchanged from those in western Europe such as Belgium, Finland, Greenland, Iceland, Norway, Sweden, Switzerland and Malta in 1980 to those in Asia and the Pacific, such as Tokelau, Malaysia, The Philippines and Thailand. In 2017, high non-HDL cholesterol was responsible for an estimated 3.9 million (95% credible interval 3.7 million-4.2 million) worldwide deaths, half of which occurred in east, southeast and south Asia. The global repositioning of lipid-related risk, with non-optimal cholesterol shifting from a distinct feature of high-income countries in northwestern Europe, north America and Australasia to one that affects countries in east and southeast Asia and Oceania should motivate the use of population-based policies and personal interventions to improve nutrition and enhance access to treatment throughout the world.Peer reviewe
- …