68 research outputs found
The Disparity in Mental Health Between Two Generations of Internal Migrants (IMs) in China: Evidence from A Nationwide Cross-Sectional Study
Background: Internal migrants (IMs) are a large, vulnerable population in China and are mostly driven by national economic reform. IMs who were born before and after 1980, when the general social and economic reform began to appear in China, are considered to be two separate generations. The generational differences in mental health across IMs remain undocumented. In this study, the intergenerational disparity in IMs’ mental health, using data from a national cross-sectional study, was assessed. Methods: Cross-sectional data from the “National Internal Migrant Dynamic Monitoring Survey 2014” were used. IMs were divided into the “old” or “new” generation, based on their date of birth (before 1980 vs. from 1980 onwards). Mental health includes psychological distress, which was measured using the Kessler Screening Scale for Psychological Distress (K6), and perceived stress, which was measured with the Perceived Stress Scales (PSS-4). Two-level Generalized Linear Mixed Models were performed so as to assess the generation gap and associated factors of each group’s mental health. IM demographics, migration characteristics, and social integration indicators were controlled for when assessing the intergenerational disparity in mental health. Results: A total of 15,999 IMs from eight different cities participated in the survey. New generation migrants accounted for 61.5% (9838/15,999) of the total sample. After controlling for participants’ characteristics, new generation migrants had higher psychological distress scores (βad = 0.084, 95% CI: (0.026,0.193) and higher perceived stress scores (βad = 0.118, 95% CI: 0.029, 0.207) than the older generation. For both generations, factors associated with good mental health included high levels of social integration, personal autonomy, and life satisfaction, as well as self-rated good physical health. For the new generation, the mental health of urban-to-urban IMs (βad = 0.201, 95%CI: 0.009, 0.410) for the K6, βad = 0.241, 95% CI: 0.073, 0.409 for the PSS-4), IMs with a longer migration duration (βad = 0.002, 95% CI: (0.000, 0.003) for the PSS-4) and IMs with a higher annual income (βad = 0.124, 95% CI: (0.029, 0.218) for the K6) was significantly poorer than their counterparts. Conclusions: New-generation migrants’ mental health is worse compared to older IMs. An array of services for addressing these generation-specific needs may facilitate the promotion of mental health among IMs in China
Intergrating human rights approaches into public health practices and policies to address health needs amongst Rohingya refugees in Bangladesh: a systematic review and meta-ethnographic analysis
Background: The Rohingya people of Myanmar are one of the most persecuted communities in the world and are forced to flee their home to escape conflict and persecution. Bangladesh receives the majority of the Rohingya refugees. On arrival they experience a number of human rights issues and the extent to which human rights approaches are used to inform public health programs is not well documented. The aim of this systematic review was to document human rights- human rights-related health issues and to develop a conceptual human rights framework to inform current policy practice and programming in relation to the needs of Rohingya refugees in Bangladesh. Methods: This systematic review was conducted using the 2015 Preferred Reporting Items for Systematic reviews and Meta-Analysis guidelines. Eight computerized databases were searched: Academic Search complete, Embase, CINAHL, JStor, Pubmed, Scopus, SocIndex, and Proquest Central along with grey literature and Google Scholar. Of a total of 752 articles retrieved from the eight databases and 17 studies from grey literature, 31 studies met our inclusion criteria. Results: Using meta-ethnographic synthesis, we developed a model that helps understand the linkages of various human rights and human rights-related health issues of Rohingya refugees. The model highlights how insufficient structural factors, poor living conditions, restricted mobility, and lack of working rights for extended periods of time collectively contribute to poor health outcomes of Rohingya refugees
Wealth stratified inequalities in service utilisation of breast cancer screening across the geographical regions: A pooled decomposition analysis
Background
Breast cancer is the most commonly occurring cancer among women in low-resourced countries. Reduction of its impacts is achievable with regular screening and early detection. The main aim of the study was to examine the role of wealth stratified inequality in the utilisation breast cancer screening (BCS) services and identified potential factors contribute to the observed inequalities.
Methods
A population-based cross-sectional multi-country analysis was used to study the utilisation of BCS services. Regression-based decomposition analyses were applied to examine the magnitude of the impact of inequalities on the utilisation of BCS services and to identify potential factors contributing to these outcomes. Observations from 140,974 women aged greater than or equal to 40 years were used in the analysis from 14 low-resource countries from the latest available national-level Demographic and Health Surveys (2008–09 to 2016).
Results
The population-weighted mean utilisation of BCS services was low at 15.41% (95% CI: 15.22, 15.60), varying from 80.82% in European countries to 25.26% in South American countries, 16.95% in North American countries, 15.06% in Asia and 13.84% in African countries. Women with higher socioeconomic status (SES) had higher utilisation of BCS services (15%) than those with lower SES (9%). A high degree of inequality in accessing and the use of BCS services existed in all study countries across geographical areas. Older women, access to limited mass media communication, being insured, rurality and low wealth score were found to be significantly associated with lower utilisation of BCS services. Together they explained approximately 60% in the total inequality in utilisation of BCS services.
Conclusions
The level of wealth relates to the inequality in accessing BCS amongst reproductive women in these 14 low-resource countries. The findings may assist policymakers to develop risk-pooling financial mechanisms and design strategies to increase community awareness of BCS services. These strategies may contribute to reducing inequalities associated with achieving higher rates of the utilisation of BCS services
Prevalence of multiple non-communicable diseases risk factors among adolescents in 140 countries:A population-based study
BACKGROUND: Modifiable non-communicable disease (NCD) risk factors are becoming increasingly common among adolescents, with clustering of these risk factors in individuals of particular concern. The aim of this study was to assess global status of clustering of common modifiable NCD risk factors among adolescents. METHODS: We used latest available data from nationally representative survey for 140 countries, namely the Global School-based Student Health Survey, the Health Behaviour in School-Aged Children and the longitudinal study of Australian Children. Weighted mean estimates of prevalence with corresponding 95% confidence intervals of nine NCD risk factors - physical inactivity, sedentary behaviour, insufficient fruits and vegetable consumption, carbonated soft drink consumption, fast food consumption, tobacco use, alcohol consumption and overweight/obesity - were calculated by country, region and sex. FINDINGS: Over 487,565 adolescents, aged 11–17 years, were included in this study. According to trend analysis, prevalence of four or more NCD risk factors increased gradually over time. Prevalence of four or more NCD risk factors was 14.8% in 2003–2007 and increased to 44% in 2013–2017, an approximately three-fold increase (44.0%). Similar trends were also observed for three and two risk factors. Large variation between countries in the prevalence of adolescents with four or more risk factors was found in all regions. The country level range was higher in the South-East Asia Region (minimum Sri Lanka = 8%, maximum Myanmar = 84%) than Western Pacific Region (minimum China = 3%, maximum Niue = 72%), European Region (minimum Sweden = 13.9%, maximum Ireland = 66.0%), African Region (minimum Senegal = 0.8%, maximum Uganda = 82.1%) and Eastern Mediterranean Region (minimum Libya = 0.2%, maximum Lebanon = 80.2%). Insufficient vegetable consumption, insufficient fruit consumption and physically inactivity were three of the four most prevalent risk factors in all regions. INTERPRETATION: Our results suggest a high prevalence of four or more NCD risk factors in adolescents globally, although variation was found between countries. Results from our study indicate that efforts to reduce adolescent NCD risk factors and the associated health burden need to be improved. These findings can assist policy makers to target the rollout of country- specific interventions. FUNDING: None
Global, regional, and national incidence, prevalence, and years lived with disability for 328 diseases and injuries for 195 countries, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016
As mortality rates decline, life expectancy increases, and populations age, non-fatal outcomes of diseases and injuries are becoming a larger component of the global burden of disease. The Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016) provides a comprehensive assessment of prevalence, incidence, and years lived with disability (YLDs) for 328 causes in 195 countries and territories from 1990 to 2016
Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017
Background:
The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 comparative risk assessment (CRA) is a comprehensive approach to risk factor quantification that offers a useful tool for synthesising evidence on risks and risk–outcome associations. With each annual GBD study, we update the GBD CRA to incorporate improved methods, new risks and risk–outcome pairs, and new data on risk exposure levels and risk–outcome associations.
Methods:
We used the CRA framework developed for previous iterations of GBD to estimate levels and trends in exposure, attributable deaths, and attributable disability-adjusted life-years (DALYs), by age group, sex, year, and location for 84 behavioural, environmental and occupational, and metabolic risks or groups of risks from 1990 to 2017. This study included 476 risk–outcome pairs that met the GBD study criteria for convincing or probable evidence of causation. We extracted relative risk and exposure estimates from 46 749 randomised controlled trials, cohort studies, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. Using the counterfactual scenario of theoretical minimum risk exposure level (TMREL), we estimated the portion of deaths and DALYs that could be attributed to a given risk. We explored the relationship between development and risk exposure by modelling the relationship between the Socio-demographic Index (SDI) and risk-weighted exposure prevalence and estimated expected levels of exposure and risk-attributable burden by SDI. Finally, we explored temporal changes in risk-attributable DALYs by decomposing those changes into six main component drivers of change as follows: (1) population growth; (2) changes in population age structures; (3) changes in exposure to environmental and occupational risks; (4) changes in exposure to behavioural risks; (5) changes in exposure to metabolic risks; and (6) changes due to all other factors, approximated as the risk-deleted death and DALY rates, where the risk-deleted rate is the rate that would be observed had we reduced the exposure levels to the TMREL for all risk factors included in GBD 2017.
Findings:
In 2017, 34·1 million (95% uncertainty interval [UI] 33·3–35·0) deaths and 1·21 billion (1·14–1·28) DALYs were attributable to GBD risk factors. Globally, 61·0% (59·6–62·4) of deaths and 48·3% (46·3–50·2) of DALYs were attributed to the GBD 2017 risk factors. When ranked by risk-attributable DALYs, high systolic blood pressure (SBP) was the leading risk factor, accounting for 10·4 million (9·39–11·5) deaths and 218 million (198–237) DALYs, followed by smoking (7·10 million [6·83–7·37] deaths and 182 million [173–193] DALYs), high fasting plasma glucose (6·53 million [5·23–8·23] deaths and 171 million [144–201] DALYs), high body-mass index (BMI; 4·72 million [2·99–6·70] deaths and 148 million [98·6–202] DALYs), and short gestation for birthweight (1·43 million [1·36–1·51] deaths and 139 million [131–147] DALYs). In total, risk-attributable DALYs declined by 4·9% (3·3–6·5) between 2007 and 2017. In the absence of demographic changes (ie, population growth and ageing), changes in risk exposure and risk-deleted DALYs would have led to a 23·5% decline in DALYs during that period. Conversely, in the absence of changes in risk exposure and risk-deleted DALYs, demographic changes would have led to an 18·6% increase in DALYs during that period. The ratios of observed risk exposure levels to exposure levels expected based on SDI (O/E ratios) increased globally for unsafe drinking water and household air pollution between 1990 and 2017. This result suggests that development is occurring more rapidly than are changes in the underlying risk structure in a population. Conversely, nearly universal declines in O/E ratios for smoking and alcohol use indicate that, for a given SDI, exposure to these risks is declining. In 2017, the leading Level 4 risk factor for age-standardised DALY rates was high SBP in four super-regions: central Europe, eastern Europe, and central Asia; north Africa and Middle East; south Asia; and southeast Asia, east Asia, and Oceania. The leading risk factor in the high-income super-region was smoking, in Latin America and Caribbean was high BMI, and in sub-Saharan Africa was unsafe sex. O/E ratios for unsafe sex in sub-Saharan Africa were notably high, and those for alcohol use in north Africa and the Middle East were notably low.
Interpretation:
By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
Population and fertility by age and sex for 195 countries and territories, 1950–2017: a systematic analysis for the Global Burden of Disease Study 2017
Background: Population estimates underpin demographic and epidemiological research and are used to track progress on numerous international indicators of health and development. To date, internationally available estimates of population and fertility, although useful, have not been produced with transparent and replicable methods and do not use standardised estimates of mortality. We present single-calendar year and single-year of age estimates of fertility and population by sex with standardised and replicable methods. Methods: We estimated population in 195 locations by single year of age and single calendar year from 1950 to 2017 with standardised and replicable methods. We based the estimates on the demographic balancing equation, with inputs of fertility, mortality, population, and migration data. Fertility data came from 7817 location-years of vital registration data, 429 surveys reporting complete birth histories, and 977 surveys and censuses reporting summary birth histories. We estimated age-specific fertility rates (ASFRs; the annual number of livebirths to women of a specified age group per 1000 women in that age group) by use of spatiotemporal Gaussian process regression and used the ASFRs to estimate total fertility rates (TFRs; the average number of children a woman would bear if she survived through the end of the reproductive age span [age 10–54 years] and experienced at each age a particular set of ASFRs observed in the year of interest). Because of sparse data, fertility at ages 10–14 years and 50–54 years was estimated from data on fertility in women aged 15–19 years and 45–49 years, through use of linear regression. Age-specific mortality data came from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017 estimates. Data on population came from 1257 censuses and 761 population registry location-years and were adjusted for underenumeration and age misreporting with standard demographic methods. Migration was estimated with the GBD Bayesian demographic balancing model, after incorporating information about refugee migration into the model prior. Final population estimates used the cohort-component method of population projection, with inputs of fertility, mortality, and migration data. Population uncertainty was estimated by use of out-of-sample predictive validity testing. With these data, we estimated the trends in population by age and sex and in fertility by age between 1950 and 2017 in 195 countries and territories. Findings: From 1950 to 2017, TFRs decreased by 49\ub74% (95% uncertainty interval [UI] 46\ub74–52\ub70). The TFR decreased from 4\ub77 livebirths (4\ub75–4\ub79) to 2\ub74 livebirths (2\ub72–2\ub75), and the ASFR of mothers aged 10–19 years decreased from 37 livebirths (34–40) to 22 livebirths (19–24) per 1000 women. Despite reductions in the TFR, the global population has been increasing by an average of 83\ub78 million people per year since 1985. The global population increased by 197\ub72% (193\ub73–200\ub78) since 1950, from 2\ub76 billion (2\ub75–2\ub76) to 7\ub76 billion (7\ub74–7\ub79) people in 2017; much of this increase was in the proportion of the global population in south Asia and sub-Saharan Africa. The global annual rate of population growth increased between 1950 and 1964, when it peaked at 2\ub70%; this rate then remained nearly constant until 1970 and then decreased to 1\ub71% in 2017. Population growth rates in the southeast Asia, east Asia, and Oceania GBD super-region decreased from 2\ub75% in 1963 to 0\ub77% in 2017, whereas in sub-Saharan Africa, population growth rates were almost at the highest reported levels ever in 2017, when they were at 2\ub77%. The global average age increased from 26\ub76 years in 1950 to 32\ub71 years in 2017, and the proportion of the population that is of working age (age 15–64 years) increased from 59\ub79% to 65\ub73%. At the national level, the TFR decreased in all countries and territories between 1950 and 2017; in 2017, TFRs ranged from a low of 1\ub70 livebirths (95% UI 0\ub79–1\ub72) in Cyprus to a high of 7\ub71 livebirths (6\ub78–7\ub74) in Niger. The TFR under age 25 years (TFU25; number of livebirths expected by age 25 years for a hypothetical woman who survived the age group and was exposed to current ASFRs) in 2017 ranged from 0\ub708 livebirths (0\ub707–0\ub709) in South Korea to 2\ub74 livebirths (2\ub72–2\ub76) in Niger, and the TFR over age 30 years (TFO30; number of livebirths expected for a hypothetical woman ageing from 30 to 54 years who survived the age group and was exposed to current ASFRs) ranged from a low of 0\ub73 livebirths (0\ub73–0\ub74) in Puerto Rico to a high of 3\ub71 livebirths (3\ub70–3\ub72) in Niger. TFO30 was higher than TFU25 in 145 countries and territories in 2017. 33 countries had a negative population growth rate from 2010 to 2017, most of which were located in central, eastern, and western Europe, whereas population growth rates of more than 2\ub70% were seen in 33 of 46 countries in sub-Saharan Africa. In 2017, less than 65% of the national population was of working age in 12 of 34 high-income countries, and less than 50% of the national population was of working age in Mali, Chad, and Niger. Interpretation: Population trends create demographic dividends and headwinds (ie, economic benefits and detriments) that affect national economies and determine national planning needs. Although TFRs are decreasing, the global population continues to grow as mortality declines, with diverse patterns at the national level and across age groups. To our knowledge, this is the first study to provide transparent and replicable estimates of population and fertility, which can be used to inform decision making and to monitor progress. Funding: Bill & Melinda Gates Foundation
Global burden of 87 risk factors in 204 countries and territories, 1990–2019: a systematic analysis for the Global Burden of Disease Study 2019
Background:
Rigorous analysis of levels and trends in exposure to leading risk factors and quantification of their effect on human health are important to identify where public health is making progress and in which cases current efforts are inadequate. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2019 provides a standardised and comprehensive assessment of the magnitude of risk factor exposure, relative risk, and attributable burden of disease.
Methods:
GBD 2019 estimated attributable mortality, years of life lost (YLLs), years of life lived with disability (YLDs), and disability-adjusted life-years (DALYs) for 87 risk factors and combinations of risk factors, at the global level, regionally, and for 204 countries and territories. GBD uses a hierarchical list of risk factors so that specific risk factors (eg, sodium intake), and related aggregates (eg, diet quality), are both evaluated. This method has six analytical steps. (1) We included 560 risk–outcome pairs that met criteria for convincing or probable evidence on the basis of research studies. 12 risk–outcome pairs included in GBD 2017 no longer met inclusion criteria and 47 risk–outcome pairs for risks already included in GBD 2017 were added based on new evidence. (2) Relative risks were estimated as a function of exposure based on published systematic reviews, 81 systematic reviews done for GBD 2019, and meta-regression. (3) Levels of exposure in each age-sex-location-year included in the study were estimated based on all available data sources using spatiotemporal Gaussian process regression, DisMod-MR 2.1, a Bayesian meta-regression method, or alternative methods. (4) We determined, from published trials or cohort studies, the level of exposure associated with minimum risk, called the theoretical minimum risk exposure level. (5) Attributable deaths, YLLs, YLDs, and DALYs were computed by multiplying population attributable fractions (PAFs) by the relevant outcome quantity for each age-sex-location-year. (6) PAFs and attributable burden for combinations of risk factors were estimated taking into account mediation of different risk factors through other risk factors. Across all six analytical steps, 30 652 distinct data sources were used in the analysis. Uncertainty in each step of the analysis was propagated into the final estimates of attributable burden. Exposure levels for dichotomous, polytomous, and continuous risk factors were summarised with use of the summary exposure value to facilitate comparisons over time, across location, and across risks. Because the entire time series from 1990 to 2019 has been re-estimated with use of consistent data and methods, these results supersede previously published GBD estimates of attributable burden.
Findings:
The largest declines in risk exposure from 2010 to 2019 were among a set of risks that are strongly linked to social and economic development, including household air pollution; unsafe water, sanitation, and handwashing; and child growth failure. Global declines also occurred for tobacco smoking and lead exposure. The largest increases in risk exposure were for ambient particulate matter pollution, drug use, high fasting plasma glucose, and high body-mass index. In 2019, the leading Level 2 risk factor globally for attributable deaths was high systolic blood pressure, which accounted for 10·8 million (95% uncertainty interval [UI] 9·51–12·1) deaths (19·2% [16·9–21·3] of all deaths in 2019), followed by tobacco (smoked, second-hand, and chewing), which accounted for 8·71 million (8·12–9·31) deaths (15·4% [14·6–16·2] of all deaths in 2019). The leading Level 2 risk factor for attributable DALYs globally in 2019 was child and maternal malnutrition, which largely affects health in the youngest age groups and accounted for 295 million (253–350) DALYs (11·6% [10·3–13·1] of all global DALYs that year). The risk factor burden varied considerably in 2019 between age groups and locations. Among children aged 0–9 years, the three leading detailed risk factors for attributable DALYs were all related to malnutrition. Iron deficiency was the leading risk factor for those aged 10–24 years, alcohol use for those aged 25–49 years, and high systolic blood pressure for those aged 50–74 years and 75 years and older.
Interpretation:
Overall, the record for reducing exposure to harmful risks over the past three decades is poor. Success with reducing smoking and lead exposure through regulatory policy might point the way for a stronger role for public policy on other risks in addition to continued efforts to provide information on risk factor harm to the general public
Measuring progress and projecting attainment on the basis of past trends of the health-related Sustainable Development Goals in 188 countries: an analysis from the Global Burden of Disease Study 2016
The UN’s Sustainable Development Goals (SDGs) are grounded in the global ambition of “leaving no one behind”. Understanding today’s gains and gaps for the health-related SDGs is essential for decision makers as they aim to improve the health of populations. As part of the Global Burden of Diseases, Injuries, and Risk Factors Study 2016 (GBD 2016), we measured 37 of the 50 health-related SDG indicators over the period 1990–2016 for 188 countries, and then on the basis of these past trends, we projected indicators to 2030
Erratum: Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017
Interpretation: By quantifying levels and trends in exposures to risk factors and the resulting disease burden, this assessment offers insight into where past policy and programme efforts might have been successful and highlights current priorities for public health action. Decreases in behavioural, environmental, and occupational risks have largely offset the effects of population growth and ageing, in relation to trends in absolute burden. Conversely, the combination of increasing metabolic risks and population ageing will probably continue to drive the increasing trends in non-communicable diseases at the global level, which presents both a public health challenge and opportunity. We see considerable spatiotemporal heterogeneity in levels of risk exposure and risk-attributable burden. Although levels of development underlie some of this heterogeneity, O/E ratios show risks for which countries are overperforming or underperforming relative to their level of development. As such, these ratios provide a benchmarking tool to help to focus local decision making. Our findings reinforce the importance of both risk exposure monitoring and epidemiological research to assess causal connections between risks and health outcomes, and they highlight the usefulness of the GBD study in synthesising data to draw comprehensive and robust conclusions that help to inform good policy and strategic health planning
- …
