38 research outputs found

    Long-term wind resource assessment for small and medium-scale turbines using operational forecast data and measure-correlate-predict

    Get PDF
    Output from a state-of-the-art, 4 km resolution, operational forecast model (UK4) was investigated as a source of long-term historical reference data for wind resource assessment. The data were used to implement measure-correlate-predict (MCP) approaches at 37 sites throughout the United Kingdom (UK). The monthly and hourly linear correlation between the UK4-predicted and observed wind speeds indicates that UK4 is capable of representing the wind climate better than the nearby meteorological stations considered. Linear MCP algorithms were implemented at the same sites using reference data from UK4 and nearby meteorological stations to predict the long-term (10-year) wind resource. To obtain robust error statistics, MCP algorithms were applied using onsite measurement periods of 1-12 months initiated at 120 different starting months throughout an 11 year data record. Using linear regression MCP over 12 months, the average percentage errors in the long-term predicted mean wind speed and power density were 3.0% and 7.6% respectively, using UK4, and 2.8% and 7.9% respectively, using nearby meteorological stations. The results indicate that UK4 is highly competitive with nearby meteorological observations as an MCP reference data source. UK4 was also shown to systematically improve MCP predictions at coastal sites due to better representation of local diurnal effects

    Modelling 3D hydrodynamics governing island-associated sandbanks in a proposed tidal stream energy site

    Get PDF
    © 2017 The Authors A 3D numerical modelling study to investigate the existing hydrodynamic regime of the Pentland Firth Inner Sound Channel, Scotland, UK is presented. Hydrodynamics that govern some sensitive sedimentary deposits in the Inner Sound Channel are discussed. A 3D hydrodynamic model Delft3D is set up for Pentland Firth, located between Orkney Islands and mainland Scotland and a full sensitivity analysis of the numerical model is carried out. The current model set up sufficiently captures the existing hydrodynamics during a full spring-neap tidal cycle inside Pentland Firth. Using model results, the 3D structure of the dynamics of the tidal flows in the Inner Sound Channel is investigated. The temporal variability of tidal flows, the residual tidal flows in the channel and local flow interactions with the Island of Stroma are described. It is proved that the tidally dominant flows drive the sediment transport gradient model to explain the principle maintenance mechanisms of two island-associated sandbanks present in the Inner Sound. The present study provides detailed information on the physics of the tidal regime in the Inner Sound and explains the presence of sandbanks in an area of high tidal flows. Due to extremely high tidal flows, Inner Sound is considered as one of the most favourable sites for tidal energy extraction in the UK. The findings of this study will be very useful in assessing the significance of impacts of future tidal energy extraction on natural hydrodynamics and sediment dynamics of the area

    Assessing the economics of large Energy Storage Plants with an optimisation methodology

    Get PDF
    Power plants, such as wind farms, that harvest renewable energy are increasing their share of the energy portfolio in several countries, including the United Kingdom. Their inability to match demand power profiles is stimulating an increasing need for large ESP (Energy Storage Plants), capable of balancing their instability and shifting power produced during low demand to peak periods. This paper presents and applies an innovative methodology to assess the economics of ESP utilising UK electricity price data, resulting in three key findings. Firstly the paper provides a methodology to assess the trade-off “reserve capacity vs. profitability” and the possibility of establishing the “optimum size capacity”. The optimal reserve size capacity maximizing the NPV (Net Present Value) is smaller than the optimum size capacity minimizing the subsidies. This is not an optimal result since it complicates the incentive scheme to align investors and policy makers' interests. Secondly, without subsidies, none of the existing ESP technologies are economically sustainable. However, subsidies are a relatively small percentage of the average price of electricity in UK. Thirdly, the possibility of operating ESP as both as a reserve and do price arbitrage was identified as a mean of decreasing subsidies for the ESP technologies

    Evaluation of full scale shear performance of tension anchor foundations: Load displacement curves and failure criteria

    Get PDF
    One of the biggest challenges faced by the offshore wave and tidal energy industry is the high cost of constructing and installing offshore foundations. Foundations based on post tensioned pile anchors can be effectively proposed to tackle this issue. A series of full-scale direct shear tests were performed on-shore to evaluate the shear resistance of post-tensioned pile anchor foundations designed for securing tidal turbine devices to a rock seabed. We focused, in particular, on the primary shear resistance mechanism of post-tensioned anchors, by applying a vertical force which mobilizes, a frictional force able to resist horizontal thrusts. Different load paths, involving monotonic or cyclic loading, were applied; several configurations for the footing of the foundation were tested. The footing stress-displacement behavior and the stress conditions at sliding failure from a number of different testing configurations were compared and analyzed. A marked consistency with the shear performance of natural rock joints was identified. This allows the behavior of tension pile foundations subjected to substantial horizontal loads to be modelled using relationships developed for rock joints, widely available in the literature. Additionally, the results obtained from different tests were also collated considering the various configurations adopted for the foundation-rock system and the applied load paths, to identify the factors that affect the shear resistance of the foundation.

    Comparison between the bivariate Weibull probability approach and linear regression for assessment of the long-term wind energy resource using MCP

    Get PDF
    A detailed investigation of a measure-correlate-predict (MCP) approach based on the bivariate Weibull (BW) probability distribution of wind speeds at pairs of correlated sites has been conducted. Since wind speeds are typically assumed to follow Weibull distributions, this approach has a stronger theoretical basis than widely used regression MCP techniques. Building on previous work that applied the technique to artificially generated wind data, we have used long-term (11 year) wind observations at 22 pairs of correlated UK sites. Additionally, 22 artificial wind data sets were generated from ideal BW distributions modelled on the observed data at the 22 site pairs. Comparison of the fitting efficiency revealed that significantly longer data periods were required to accurately extract the BW distribution parameters from the observed data, compared to artificial wind data, due to seasonal variations. The overall performance of the BW approach was compared to standard regression MCP techniques for the prediction of the 10 year wind resource using both observed and artificially generated wind data at the 22 site pairs for multiple short-term measurement periods of 1-12 months. Prediction errors were quantified by comparing the predicted and observed values of mean wind speed, mean wind power density, Weibull shape factor and standard deviation of wind speeds at each site. Using the artificial wind data, the BW approach outperformed the regression approaches for all measurement periods. When applied to the real wind speed observations however, the performance of the BW approach was comparable to the regression approaches when using a full 12 month measurement period and generally worse than the regression approaches for shorter data periods. This suggests that real wind observations at correlated sites may differ from ideal BW distributions and hence regression approaches, which require less fitting parameters, may be more appropriate, particularly when using short measurement periods

    Biofuels and the role of space in sustainable innovation journeys

    Get PDF
    This paper aims to identify the lessons that should be learnt from how biofuels have been envisioned from the aftermath of the oil shocks of the 1970s to the present,and how these visions compare with biofuel production networks emerging in the 2000s. Working at the interface of sustainable innovation journey research and geographical theories on the spatial unevenness of sustainability transition projects,we show how the biofuels controversy is linked to characteristics of globalised industrial agricultural systems. The legitimacy problems of biofuels cannot be addressed by sustainability indicators or new technologies alone since they arise from the spatial ordering of biofuel production. In the 1970-80s, promoters of bioenergy anticipated current concerns about food security implications but envisioned bioenergy production to be territorially embedded at national or local scales where these issues would be managed. Where the territorial and scalar vision was breached, it was to imagine poorer countries exporting higher-value biofuel to the North rather than the raw material as in the controversial global biomass commodity chains of today. However, controversy now extends to the global impacts of national biofuel systems on food security and greenhouse gas emissions, and to their local impacts becoming more widely known. South/South and North/North trade conflicts are also emerging as are questions over biodegradable wastes and agricultural residues as global commodities. As assumptions of a food-versus-fuel conflict have come to be challenged, legitimacy questions over global agri-business and trade are spotlighted even further. In this context, visions of biofuel development that address these broader issues might be promising. These include large-scale biomass-for-fuel models in Europe that would transform global trade rules to allow small farmers in the global South to compete, and smallscale biofuel systems developed to address local energy needs in the South

    The role of hydrogen and fuel cells in the global energy system

    Get PDF
    Hydrogen technologies have experienced cycles of excessive expectations followed by disillusion. Nonetheless, a growing body of evidence suggests these technologies form an attractive option for the deep decarb onisation of global energy systems, and that recent improvements in their cost and performance point towards economic viability as well. This paper is a comprehensive review of the potential role that hydrogen could play in the provision of electricity, h eat, industry, transport and energy storage in a low - carbon energy system, and an assessment of the status of hydrogen in being able to fulfil that potential. The picture that emerges is one of qualified promise: hydrogen is well established in certain nic hes such as forklift trucks, while mainstream applications are now forthcoming. Hydrogen vehicles are available commercially in several countries, and 225,000 fuel cell home heating systems have been sold. This represents a step change from the situation of only five years ago. This review shows that challenges around cost and performance remain, and considerable improvements are still required for hydrogen to become truly competitive. But such competitiveness in the medium - term future no longer seems an unrealistic prospect, which fully justifies the growing interest and policy support for these technologies around the world

    Policy mixes for incumbency: the destructive recreation of renewable energy, shale gas 'fracking,' and nuclear power in the United Kingdom

    Get PDF
    The notion of a ‘policy mix’ can describe interactions across a wide range of innovation policies, including ‘motors for creation’ as well as for ‘destruction’. This paper focuses on the United Kingdom’s (UK) ‘new policy direction’ that has weakened support for renewables and energy efficiency schemes while strengthening promotion of nuclear power and hydraulic fracturing for natural gas (‘fracking’). The paper argues that a ‘policy apparatus for incumbency’ is emerging which strengthens key regimebased technologies while arguably damaging emerging niche innovations. Basing the discussion around the three technology-based cases of renewable energy and efficiency, fracking, and nuclear power, this paper refers to this process as “destructive recreation”. Our study raises questions over the extent to which policymaking in the energy field is not so much driven by stated aims around sustainability transitions, as by other policy drivers. It investigates different ‘strategies of incumbency’ including ‘securitization’, ‘masking’, ‘reinvention’, and ‘capture.’ It suggests that analytical frameworks should extend beyond the particular sectors in focus, with notions of what counts as a relevant ‘policy maker’ correspondingly also expanded, in order to explore a wider range of nodes and critical junctures as entry points for understanding how relations of incumbency are forged and reproduced
    corecore