592 research outputs found

    Improved bounds on sample size for implicit matrix trace estimators

    Full text link
    This article is concerned with Monte-Carlo methods for the estimation of the trace of an implicitly given matrix AA whose information is only available through matrix-vector products. Such a method approximates the trace by an average of NN expressions of the form \ww^t (A\ww), with random vectors \ww drawn from an appropriate distribution. We prove, discuss and experiment with bounds on the number of realizations NN required in order to guarantee a probabilistic bound on the relative error of the trace estimation upon employing Rademacher (Hutchinson), Gaussian and uniform unit vector (with and without replacement) probability distributions. In total, one necessary bound and six sufficient bounds are proved, improving upon and extending similar estimates obtained in the seminal work of Avron and Toledo (2011) in several dimensions. We first improve their bound on NN for the Hutchinson method, dropping a term that relates to rank(A)rank(A) and making the bound comparable with that for the Gaussian estimator. We further prove new sufficient bounds for the Hutchinson, Gaussian and the unit vector estimators, as well as a necessary bound for the Gaussian estimator, which depend more specifically on properties of the matrix AA. As such they may suggest for what type of matrices one distribution or another provides a particularly effective or relatively ineffective stochastic estimation method

    Schur properties of convolutions of gamma random variables

    Get PDF
    Sufficient conditions for comparing the convolutions of heterogeneous gamma random variables in terms of the usual stochastic order are established. Such comparisons are characterized by the Schur convexity properties of the cumulative distribution function of the convolutions. Some examples of the practical applications of our results are given

    Newton-Type Methods for Non-Convex Optimization Under Inexact Hessian Information

    Full text link
    We consider variants of trust-region and cubic regularization methods for non-convex optimization, in which the Hessian matrix is approximated. Under mild conditions on the inexact Hessian, and using approximate solution of the corresponding sub-problems, we provide iteration complexity to achieve ϵ \epsilon -approximate second-order optimality which have shown to be tight. Our Hessian approximation conditions constitute a major relaxation over the existing ones in the literature. Consequently, we are able to show that such mild conditions allow for the construction of the approximate Hessian through various random sampling methods. In this light, we consider the canonical problem of finite-sum minimization, provide appropriate uniform and non-uniform sub-sampling strategies to construct such Hessian approximations, and obtain optimal iteration complexity for the corresponding sub-sampled trust-region and cubic regularization methods.Comment: 32 page

    Implicit Langevin Algorithms for Sampling From Log-concave Densities

    Full text link
    For sampling from a log-concave density, we study implicit integrators resulting from θ\theta-method discretization of the overdamped Langevin diffusion stochastic differential equation. Theoretical and algorithmic properties of the resulting sampling methods for θ∈[0,1] \theta \in [0,1] and a range of step sizes are established. Our results generalize and extend prior works in several directions. In particular, for θ≥1/2\theta\ge1/2, we prove geometric ergodicity and stability of the resulting methods for all step sizes. We show that obtaining subsequent samples amounts to solving a strongly-convex optimization problem, which is readily achievable using one of numerous existing methods. Numerical examples supporting our theoretical analysis are also presented

    Invariance of Weight Distributions in Rectified MLPs

    Full text link
    An interesting approach to analyzing neural networks that has received renewed attention is to examine the equivalent kernel of the neural network. This is based on the fact that a fully connected feedforward network with one hidden layer, a certain weight distribution, an activation function, and an infinite number of neurons can be viewed as a mapping into a Hilbert space. We derive the equivalent kernels of MLPs with ReLU or Leaky ReLU activations for all rotationally-invariant weight distributions, generalizing a previous result that required Gaussian weight distributions. Additionally, the Central Limit Theorem is used to show that for certain activation functions, kernels corresponding to layers with weight distributions having 00 mean and finite absolute third moment are asymptotically universal, and are well approximated by the kernel corresponding to layers with spherical Gaussian weights. In deep networks, as depth increases the equivalent kernel approaches a pathological fixed point, which can be used to argue why training randomly initialized networks can be difficult. Our results also have implications for weight initialization.Comment: ICML 201

    Assessing stochastic algorithms for large scale nonlinear least squares problems using extremal probabilities of linear combinations of gamma random variables

    Get PDF
    This article considers stochastic algorithms for efficiently solving a class of large scale non-linear least squares (NLS) problems which frequently arise in applications. We propose eight variants of a practical randomized algorithm where the uncertainties in the major stochastic steps are quantified. Such stochastic steps involve approximating the NLS objective function using Monte-Carlo methods, and this is equivalent to the estimation of the trace of corresponding symmetric positive semi-definite (SPSD) matrices. For the latter, we prove tight necessary and sufficient conditions on the sample size (which translates to cost) to satisfy the prescribed probabilistic accuracy. We show that these conditions are practically computable and yield small sample sizes. They are then incorporated in our stochastic algorithm to quantify the uncertainty in each randomized step. The bounds we use are applications of more general results regarding extremal tail probabilities of linear combinations of gamma distributed random variables. We derive and prove new results concerning the maximal and minimal tail probabilities of such linear combinations, which can be considered independently of the rest of this paper

    Second-Order Optimization for Non-Convex Machine Learning: An Empirical Study

    Full text link
    While first-order optimization methods such as stochastic gradient descent (SGD) are popular in machine learning (ML), they come with well-known deficiencies, including relatively-slow convergence, sensitivity to the settings of hyper-parameters such as learning rate, stagnation at high training errors, and difficulty in escaping flat regions and saddle points. These issues are particularly acute in highly non-convex settings such as those arising in neural networks. Motivated by this, there has been recent interest in second-order methods that aim to alleviate these shortcomings by capturing curvature information. In this paper, we report detailed empirical evaluations of a class of Newton-type methods, namely sub-sampled variants of trust region (TR) and adaptive regularization with cubics (ARC) algorithms, for non-convex ML problems. In doing so, we demonstrate that these methods not only can be computationally competitive with hand-tuned SGD with momentum, obtaining comparable or better generalization performance, but also they are highly robust to hyper-parameter settings. Further, in contrast to SGD with momentum, we show that the manner in which these Newton-type methods employ curvature information allows them to seamlessly escape flat regions and saddle points.Comment: 21 pages, 11 figures. Restructure the paper and add experiment
    • …
    corecore