6 research outputs found

    Degradation of telmisartan (TELMA-H) compounds in aqueous solution using non-thermal atmospheric pressure plasma jet

    Get PDF
    In this study we investigate the degradation of telmisartan (Telma-H) in simulated aqueous solution using non-thermal atmospheric pressure plasma jet (APPJ). Aqueous solution containing Telma-H was treated with APPJ as a function of applied potential and reaction time. The degradation of Telma-H was investigated by means of UV-Visible spectroscopy. Optical emission spectra (OES) of the plasma jet was used to identify the reactive species that contributed to degrade Telma H compounds. The variation of pH and conductivity of the plasma treated Telma H aqueous solution was also measured

    Angiogenic Factors Stimulate Growth of Adult Neural Stem Cells

    Get PDF
    The ability to grow a uniform cell type from the adult central nervous system (CNS) is valuable for developing cell therapies and new strategies for drug discovery. The adult mammalian brain is a source of neural stem cells (NSC) found in both neurogenic and non-neurogenic zones but difficulties in culturing these hinders their use as research tools.Here we show that NSCs can be efficiently grown in adherent cell cultures when angiogenic signals are included in the medium. These signals include both anti-angiogenic factors (the soluble form of the Notch receptor ligand, Dll4) and pro-angiogenic factors (the Tie-2 receptor ligand, Angiopoietin 2). These treatments support the self renewal state of cultured NSCs and expression of the transcription factor Hes3, which also identifies the cancer stem cell population in human tumors. In an organotypic slice model, angiogenic factors maintain vascular structure and increase the density of dopamine neuron processes.We demonstrate new properties of adult NSCs and a method to generate efficient adult NSC cultures from various central nervous system areas. These findings will help establish cellular models relevant to cancer and regeneration

    Multi-ethnic genome-wide association study for atrial fibrillation

    Get PDF
    Atrial fibrillation (AF) affects more than 33 million individuals worldwide and has a complex heritability. We conducted the largest meta-analysis of genome-wide association studies (GWAS) for AF to date, consisting of more than half a million individuals, including 65,446 with AF. In total, we identified 97 loci significantly associated with AF, including 67 that were novel in a combined-ancestry analysis, and 3 that were novel in a European-specific analysis. We sought to identify AF-associated genes at the GWAS loci by performing RNA-sequencing and expression quantitative trait locus analyses in 101 left atrial samples, the most relevant tissue for AF. We also performed transcriptome-wide analyses that identified 57 AF-associated genes, 42 of which overlap with GWAS loci. The identified loci implicate genes enriched within cardiac developmental, electrophysiological, contractile and structural pathways. These results extend our understanding of the biological pathways underlying AF and may facilitate the development of therapeutics for AF

    Prospects of spintronics based on 2D materials

    No full text
    corecore