4,433 research outputs found

    Collectivity in the optical response of small metal clusters

    Get PDF
    The question whether the linear absorption spectra of metal clusters can be interpreted as density oscillations (collective ``plasmons'') or can only be understood as transitions between distinct molecular states is still a matter of debate for clusters with only a few electrons. We calculate the photoabsorption spectra of Na2 and Na5+ comparing two different methods: quantum fluid-dynamics and time-dependent density functional theory. The changes in the electronic structure associated with particular excitations are visualized in ``snapshots'' via transition densities. Our analysis shows that even for the smallest clusters, the observed excitations can be interpreted as intuitively understandable density oscillations. For Na5+, the importance of self-interaction corrections to the adiabatic local density approximation is demonstrated.Comment: 6 pages, 3 figures. To appear in special issue of Applied Physics B, "Optical properties of Nanoparticles

    Galaxy Modeling with Compound Elliptical Shapelets

    Full text link
    Gauss-Hermite and Gauss-Laguerre ("shapelet") decompositions of images have become important tools in galaxy modeling, particularly for the purpose of extracting ellipticity and morphological information from astronomical data. However, the standard shapelet basis functions cannot compactly represent galaxies with high ellipticity or large Sersic index, and the resulting underfitting bias has been shown to present a serious challenge for weak-lensing methods based on shapelets. We present here a new convolution relation and a compound "multi-scale" shapelet basis to address these problems, and provide a proof-of-concept demonstration using a small sample of nearby galaxies.Comment: 14 pages, 7 figure

    A priority based routing protocol for wireless sensor networks

    Get PDF
    Recently, the demands on wireless sensor networks have switched from low traffic rate and static topology to more challenging requirements in order to meet the rapid expansion of WSN into various domain applications. This paper proposes a seamless cross layer solution that integrates network layer and medium access control to accommodate some of the new challenges. This new solution allows routing paths being generated dynamically to meet the requirement of potential mobile nodes. Higher data throughput and flow control are part of the new demands required to be addressed urgently. The proposed solution integrates a priority based MAC to handle congestion and packet loss problems which commonly happened in WSN when an occurrence of event spread into wide are

    Quantifying galaxy shapes: Sersiclets and beyond

    Full text link
    Parametrising galaxy morphologies is a challenging task, e.g., in shear measurements of weak lensing or investigations of galaxy evolution. The huge variety of morphologies requires an approach that is highly flexible, e.g., accounting for azimuthal structure. We revisit the method of sersiclets, where galaxy morphologies are decomposed into basis functions based on the Sersic profile. This approach is justified by the fact that the Sersic profile is the first-order Taylor expansion of any real light profile. We show that sersiclets overcome the modelling failures of shapelets. However, sersiclets implicate an unphysical relation between the steepness of the light profile and the spatial scale of azimuthal structures, which is not obeyed by real galaxy morphologies and can therefore give rise to modelling failures. Moreover, we demonstrate that sersiclets are prone to undersampling, which restricts sersiclet modelling to highly resolved galaxy images. Analysing data from the Great08 challenge, we demonstrate that sersiclets should not be used in weak-lensing studies. We conclude that although the sersiclet approach appears very promising at first glance, it suffers from conceptual and practical problems that severly limit its usefulness. The Sersic profile can be enhanced by higher-order terms in the Taylor expansion, which can drastically improve model reconstructions of galaxy images. If orthonormalised, these higher-order profiles can overcome the problems of sersiclets while preserving their mathematical justification.Comment: 14 pages, 12 figures, 2 tables; accepted by MNRA

    Repeatable method of thermal stress fracture test of brittle materials

    Get PDF
    Method heats specimens slowly and with sufficient control so that the critical temperature gradient in the specimens cannot occur before temperature equilibrium is reached

    Universal Algorithm for Simulating and Evaluating Cyclic Voltammetry at Macroporous Electrodes by Considering Random Arrays of Microelectrodes

    Get PDF
    An algorithm for the simulation and evaluation of cyclic voltammetry (CV) at macroporous electrodes such as felts, foams, and layered structures is presented. By considering 1D, 2D, and 3D arrays of electrode sheets, cylindrical microelectrodes, hollow‐cylindrical microelectrodes, and hollowspherical microelectrodes the internal diffusion domains of the macroporous structures are approximated. A universal algorithm providing the timedependent surface concentrations of the electrochemically active species, required for simulating cyclic voltammetry responses of the individual planar, cylindrical, and spherical microelectrodes, is presented as well. An essential ingredient of the algorithm, which is based on Laplace integral transformation techniques, is the use of a modified Talbot contour for the inverse Laplace transformation. It is demonstrated that first‐order homogeneous chemical kinetics preceding and/or following the electrochemical reaction and electrochemically active species with non‐equal diffusion coefficients can be included in all diffusion models as well. The proposed theory is supported by experimental data acquired for a reference reaction, the oxidation of [Fe(CN)6]4− at platinum electrodes as well as for a technically relevant reaction, the oxidation of VO2+ at carbon felt electrodes. Based on our calculation strategy, we provide a powerful open source tool for simulating and evaluating CV data implemented into a Python graphical user interface (GUI)

    White Clover mgmt Univ GA B 1251_3

    Get PDF

    Assessment of stochastic and deterministic models of 6304 quasar lightcurves from SDSS Stripe 82

    Full text link
    The optical light curves of many quasars show variations of tenths of a magnitude or more on time scales of months to years. This variation often cannot be described well by a simple deterministic model. We perform a Bayesian comparison of over 20 deterministic and stochastic models on 6304 QSO light curves in SDSS Stripe 82. We include the damped random walk (or Ornstein-Uhlenbeck [OU] process), a particular type of stochastic model which recent studies have focused on. Further models we consider are single and double sinusoids, multiple OU processes, higher order continuous autoregressive processes, and composite models. We find that only 29 out of 6304 QSO lightcurves are described significantly better by a deterministic model than a stochastic one. The OU process is an adequate description of the vast majority of cases (6023). Indeed, the OU process is the best single model for 3462 light curves, with the composite OU process/sinusoid model being the best in 1706 cases. The latter model is the dominant one for brighter/bluer QSOs. Furthermore, a non-negligible fraction of QSO lightcurves show evidence that not only the mean is stochastic but the variance is stochastic, too. Our results confirm earlier work that QSO light curves can be described with a stochastic model, but place this on a firmer footing, and further show that the OU process is preferred over several other stochastic and deterministic models. Of course, there may well exist yet better (deterministic or stochastic) models which have not been considered here.Comment: accepted by AA, 12 pages, 11 figures, 4 table
    corecore