1,313 research outputs found

    Understanding barriers to decision making in the UK energy-food-water nexus: The added value of interdisciplinary approaches

    Get PDF
    The nexus represents a multi-dimensional means of scientific enquiry which seeks to describe the complex and non-linear interactions between energy, food and water with the climate, whilst furthering understanding of wider implications for society. These resources are fundamental for human life but are negatively affected by shocks such as climate change and characterize some of the main challenges for global sustainable development. Given the multidimensional and complex nature of the nexus, a transdisciplinary approach to knowledge development through co-production is needed to timely and effectively inform decision making processes to build societal resilience to these shocks going beyond the sectorality of current research practice. The paper presents findings from five themed workshops (shocks and hazards, infrastructure, local economy, governance and governments, finance and insurance) with 80 stakeholders from academia, government and industry in the UK to explore the impact of climate and weather shocks across the energy-food-water nexus and barriers to related responses. The research identified key stakeholders’ concerns, opportunities and barriers to better inform decision-making centred on four themes: communication and collaboration, decision making processes, social and cultural dimensions, and the nature of responses to nexus shocks. We discuss implications of these barriers and how addressing these can better facilitate constructive dialogue and more efficient decision-making in response to nexus shocks

    Climate stories: Why do climate scientists and sceptical voices participate in the climate debate?

    Get PDF
    Public perceptions of the climate debate predominantly frame the key actors as climate scientists versus sceptical voices; however, it is unclear why climate scientists and sceptical voices choose to participate in this antagonistic and polarised public battle. A narrative interview approach is used to better understand the underlying rationales behind 22 climate scientists’ and sceptical voices’ engagement in the climate debate, potential commonalities, as well as each actor’s ability to be critically self-reflexive. Several overlapping rationales are identified including a sense of duty to publicly engage, agreement that complete certainty about the complex assemblage of climate change is unattainable and that political factors are central to the climate debate. We argue that a focus on potential overlaps in perceptions and rationales as well as the ability to be critically self-reflexive may encourage constructive discussion among actors previously engaged in purposefully antagonistic exchange on climate change

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≄20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≀pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≀{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Search for new phenomena in final states with an energetic jet and large missing transverse momentum in pp collisions at √ s = 8 TeV with the ATLAS detector

    Get PDF
    Results of a search for new phenomena in final states with an energetic jet and large missing transverse momentum are reported. The search uses 20.3 fb−1 of √ s = 8 TeV data collected in 2012 with the ATLAS detector at the LHC. Events are required to have at least one jet with pT > 120 GeV and no leptons. Nine signal regions are considered with increasing missing transverse momentum requirements between Emiss T > 150 GeV and Emiss T > 700 GeV. Good agreement is observed between the number of events in data and Standard Model expectations. The results are translated into exclusion limits on models with either large extra spatial dimensions, pair production of weakly interacting dark matter candidates, or production of very light gravitinos in a gauge-mediated supersymmetric model. In addition, limits on the production of an invisibly decaying Higgs-like boson leading to similar topologies in the final state are presente

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  Όb-1 of data as a function of transverse momentum (pT) and the transverse energy (ÎŁETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∌0) correlation that grows rapidly with increasing ÎŁETPb. A long-range “away-side” (Δϕ∌π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ÎŁETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ÎŁETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁥2Δϕ modulation for all ÎŁETPb ranges and particle pT

    Weather conditions and daily television use in the Netherlands, 1996–2005

    Get PDF
    This study examines the impact of daily atmospheric weather conditions on daily television use in the Netherlands for the period 1996–2005. The effects of the weather parameters are considered in the context of mood and mood management theory. It is proposed that inclement and uncomfortable weather conditions are associated with lower human mood, and that watching entertainment and avoiding informational programs may serve to repair such mood. We consequently hypothesize that people spend more time watching television if inclement and uncomfortable weather conditions (low temperatures, little sunshine, much precipitation, high wind velocity, less daylight) coincide with more airtime for entertainment programs, but that they view less if the same weather conditions coincide with more airtime devoted to information fare. We put this interaction thesis to a test using a time series analysis of daily television viewing data of the Dutch audience obtained from telemeters (T = 3,653), merged with meteorological weather station statistics and program broadcast figures, whilst controlling for a wide array of recurrent and one-time societal events. The results provide substantial support for the proposed interaction of program airtime and the weather parameters temperature and sunshine on aggregate television viewing time. Implications of the findings are discussed
    • 

    corecore