1,125 research outputs found

    Complexity of equational theory of relational algebras with standard projection elements

    Get PDF
    The class TPA\mathsf{TPA} of t rue p airing a lgebras is defined to be the class of relation algebras expanded with concrete set theoretical projection functions. The main results of the present paper is that neither the equational theory of TPA\mathsf{TPA} nor the first order theory of TPA\mathsf{TPA} are decidable. Moreover, we show that the set of all equations valid in TPA\mathsf{TPA} is exactly on the Π11\Pi ^1_1 level. We consider the class TPA\mathsf{TPA}^- of the relation algebra reducts of TPA\mathsf{TPA}’s, as well. We prove that the equational theory of TPA\mathsf{TPA}^- is much simpler, namely, it is recursively enumerable. We also give motivation for our results and some connections to related work

    Implications of a high-definition multileaf collimator (HD-MLC) on treatment planning techniques for stereotactic body radiation therapy (SBRT): a planning study

    Get PDF
    <p>Abstract</p> <p>Purpose</p> <p>To assess the impact of two multileaf collimator (MLC) systems (2.5 and 5 mm leaf widths) on three-dimensional conformal radiotherapy, intensity-modulated radiotherapy, and dynamic conformal arc techniques for stereotactic body radiation therapy (SBRT) of liver and lung lesions.</p> <p>Methods</p> <p>Twenty-nine SBRT plans of primary liver (n = 11) and lung (n = 18) tumors were the basis of this study. Five-millimeter leaf width 120-leaf Varian Millennium (M120) MLC-based plans served as reference, and were designed using static conformal beams (3DCRT), sliding-window intensity-modulated beams (IMRT), or dynamic conformal arcs (DCA). Reference plans were either re-optimized or recomputed, with identical planning parameters, for a 2.5-mm width 120-leaf BrainLAB/Varian high-definition (HD120) MLC system. Dose computation was based on the anisotropic analytical algorithm (AAA, Varian Medical Systems) with tissue heterogeneity taken into account. Each plan was normalized such that 100% of the prescription dose covered 95% of the planning target volume (PTV). Isodose distributions and dose-volume histograms (DVHs) were computed and plans were evaluated with respect to target coverage criteria, normal tissue sparing criteria, as well as treatment efficiency.</p> <p>Results</p> <p>Dosimetric differences achieved using M120 and the HD120 MLC planning were generally small. Dose conformality improved in 51.7%, 62.1% and 55.2% of the IMRT, 3DCRT and DCA cases, respectively, with use of the HD120 MLC system. Dose heterogeneity increased in 75.9%, 51.7%, and 55.2% of the IMRT, 3DCRT and DCA cases, respectively, with use of the HD120 MLC system. DVH curves demonstrated a decreased volume of normal tissue irradiated to the lower (90%, 50% and 25%) isodose levels with the HD120 MLC.</p> <p>Conclusion</p> <p>Data derived from the present comparative assessment suggest dosimetric merit of the high definition MLC system over the millennium MLC system. However, the clinical significance of these results warrants further investigation in order to determine whether the observed dosimetric advantages translate into outcome improvements.</p

    A randomized, phase III trial to evaluate rucaparib monotherapy as maintenance treatment in patients with newly diagnosed ovarian cancer (ATHENA–MONO/GOG-3020/ENGOT-ov45)

    Get PDF
    PURPOSE: ATHENA (ClinicalTrials.gov identifier: NCT03522246) was designed to evaluate rucaparib first-line maintenance treatment in a broad patient population, including those without BRCA1 or BRCA2 (BRCA) mutations or other evidence of homologous recombination deficiency (HRD), or high-risk clinical characteristics such as residual disease. We report the results from the ATHENA–MONO comparison of rucaparib versus placebo. METHODS: Patients with stage III-IV high-grade ovarian cancer undergoing surgical cytoreduction (R0/complete resection permitted) and responding to first-line platinum-doublet chemotherapy were randomly assigned 4:1 to oral rucaparib 600 mg twice a day or placebo. Stratification factors were HRD test status, residual disease after chemotherapy, and timing of surgery. The primary end point of investigator-assessed progression-free survival was assessed in a step-down procedure, first in the HRD population (BRCA-mutant or BRCA wild-type/loss of heterozygosity high tumor), and then in the intent-to-treat population. RESULTS: As of March 23, 2022 (data cutoff), 427 and 111 patients were randomly assigned to rucaparib or placebo, respectively (HRD population: 185 v 49). Median progression-free survival (95% CI) was 28.7 months (23.0 to not reached) with rucaparib versus 11.3 months (9.1 to 22.1) with placebo in the HRD population (log-rank P = .0004; hazard ratio [HR], 0.47; 95% CI, 0.31 to 0.72); 20.2 months (15.2 to 24.7) versus 9.2 months (8.3 to 12.2) in the intent-to-treat population (log-rank P < .0001; HR, 0.52; 95% CI, 0.40 to 0.68); and 12.1 months (11.1 to 17.7) versus 9.1 months (4.0 to 12.2) in the HRD-negative population (HR, 0.65; 95% CI, 0.45 to 0.95). The most common grade ≥ 3 treatment-emergent adverse events were anemia (rucaparib, 28.7% v placebo, 0%) and neutropenia (14.6% v 0.9%). CONCLUSION: Rucaparib monotherapy is effective as first-line maintenance, conferring significant benefit versus placebo in patients with advanced ovarian cancer with and without HRD

    The importance of imprinting in the human placenta.

    Get PDF
    As a field of study, genomic imprinting has grown rapidly in the last 20 years, with a growing figure of around 100 imprinted genes known in the mouse and approximately 50 in the human. The imprinted expression of genes may be transient and highly tissue-specific, and there are potentially hundreds of other, as yet undiscovered, imprinted transcripts. The placenta is notable amongst mammalian organs for its high and prolific expression of imprinted genes. This review discusses the development of the human placenta and focuses on the function of imprinting in this organ. Imprinting is potentially a mechanism to balance parental resource allocation and it plays an important role in growth. The placenta, as the interface between mother and fetus, is central to prenatal growth control. The expression of genes subject to parental allelic expression bias has, over the years, been shown to be essential for the normal development and physiology of the placenta. In this review we also discuss the significance of genes that lack conservation of imprinting between mice and humans, genes whose imprinted expression is often placental-specific. Finally, we illustrate the importance of imprinting in the postnatal human in terms of several human imprinting disorders, with consideration of the brain as a key organ for imprinted gene expression after birth

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Observation of associated near-side and away-side long-range correlations in √sNN=5.02  TeV proton-lead collisions with the ATLAS detector

    Get PDF
    Two-particle correlations in relative azimuthal angle (Δϕ) and pseudorapidity (Δη) are measured in √sNN=5.02  TeV p+Pb collisions using the ATLAS detector at the LHC. The measurements are performed using approximately 1  μb-1 of data as a function of transverse momentum (pT) and the transverse energy (ΣETPb) summed over 3.1<η<4.9 in the direction of the Pb beam. The correlation function, constructed from charged particles, exhibits a long-range (2<|Δη|<5) “near-side” (Δϕ∼0) correlation that grows rapidly with increasing ΣETPb. A long-range “away-side” (Δϕ∼π) correlation, obtained by subtracting the expected contributions from recoiling dijets and other sources estimated using events with small ΣETPb, is found to match the near-side correlation in magnitude, shape (in Δη and Δϕ) and ΣETPb dependence. The resultant Δϕ correlation is approximately symmetric about π/2, and is consistent with a dominant cos⁡2Δϕ modulation for all ΣETPb ranges and particle pT

    Measurement of the cross-section of high transverse momentum vector bosons reconstructed as single jets and studies of jet substructure in pp collisions at √s = 7 TeV with the ATLAS detector

    Get PDF
    This paper presents a measurement of the cross-section for high transverse momentum W and Z bosons produced in pp collisions and decaying to all-hadronic final states. The data used in the analysis were recorded by the ATLAS detector at the CERN Large Hadron Collider at a centre-of-mass energy of √s = 7 TeV;{\rm Te}{\rm V}andcorrespondtoanintegratedluminosityof and correspond to an integrated luminosity of 4.6\;{\rm f}{{{\rm b}}^{-1}}.ThemeasurementisperformedbyreconstructingtheboostedWorZbosonsinsinglejets.ThereconstructedjetmassisusedtoidentifytheWandZbosons,andajetsubstructuremethodbasedonenergyclusterinformationinthejetcentreofmassframeisusedtosuppressthelargemultijetbackground.ThecrosssectionforeventswithahadronicallydecayingWorZboson,withtransversemomentum. The measurement is performed by reconstructing the boosted W or Z bosons in single jets. The reconstructed jet mass is used to identify the W and Z bosons, and a jet substructure method based on energy cluster information in the jet centre-of-mass frame is used to suppress the large multi-jet background. The cross-section for events with a hadronically decaying W or Z boson, with transverse momentum {{p}_{{\rm T}}}\gt 320\;{\rm Ge}{\rm V}andpseudorapidity and pseudorapidity |\eta |\lt 1.9,ismeasuredtobe, is measured to be {{\sigma }_{W+Z}}=8.5\pm 1.7$ pb and is compared to next-to-leading-order calculations. The selected events are further used to study jet grooming techniques

    Search for direct pair production of the top squark in all-hadronic final states in proton-proton collisions at s√=8 TeV with the ATLAS detector

    Get PDF
    The results of a search for direct pair production of the scalar partner to the top quark using an integrated luminosity of 20.1fb−1 of proton–proton collision data at √s = 8 TeV recorded with the ATLAS detector at the LHC are reported. The top squark is assumed to decay via t˜→tχ˜01 or t˜→ bχ˜±1 →bW(∗)χ˜01 , where χ˜01 (χ˜±1 ) denotes the lightest neutralino (chargino) in supersymmetric models. The search targets a fully-hadronic final state in events with four or more jets and large missing transverse momentum. No significant excess over the Standard Model background prediction is observed, and exclusion limits are reported in terms of the top squark and neutralino masses and as a function of the branching fraction of t˜ → tχ˜01 . For a branching fraction of 100%, top squark masses in the range 270–645 GeV are excluded for χ˜01 masses below 30 GeV. For a branching fraction of 50% to either t˜ → tχ˜01 or t˜ → bχ˜±1 , and assuming the χ˜±1 mass to be twice the χ˜01 mass, top squark masses in the range 250–550 GeV are excluded for χ˜01 masses below 60 GeV

    Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV

    Get PDF
    The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
    corecore