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1. Introduction

As usual, let R = (−∞,+∞), R+ = [0,+∞), R− = (−∞, 0], N = {1, 2, . . . , } and Rn
+
= {(x1, . . . , xn)T : xi ≥ 0,

1 ≤ i ≤ n}, respectively. For each x = (x1, x2, . . . , xn)T ∈ Rn, the norm of x is defined as |x| =
∑n
i=1 |xi|. Let BC

denote the Banach space of bounded continuous functions φ : R → Rn with the norm ‖φ‖ = supθ∈R
∑n
i=1 |φi(θ)|, where

φ = (φ1, φ2, . . . , φn)
T. Let J ⊂ R and PC(J,Rn) denote the set of operators φ : J → Rn which are continuous for t ∈ J,

t 6= τk and have discontinuities of the first kind at the points τk ∈ J(k ∈ N), but are continuous from the left at these points.
Recent years havewitnessed increasing interest in the existence of positive periodic solutions. By employing the powerful

and efficient method of coincidence degree [1–4] and theory in cones [5–10], some verifiable sufficient criteria for the
existence of positive periodic solutions have been established. However, compared with advances in the area of studying
the existence of periodic solutions of continuous differential equations, less progress has been achieved in the so-called
impulsive differential equations, which are subject to short-time perturbation or change very rapidly at certain instants;
only a few papers are concerned with this subject: see [5,11,10]. In fact, differential equations involving impulse effects
occur in almost every domain of applied science: physics, population dynamics, ecology, biological systems, biotechnology,
industrial robotic, pharmacokinetics, optimal control, etc. Therefore, the study of this class of dynamical systems is becoming
a rapidly growing field. Motivated by this, in the present paper, by utilizing the fixed point theorem due to Krasnoselskii,
we aim to study the existence and multiplicity of periodic solutions of the following differential equation with impulses:{

x′(t) = A(t, x(t))x(t)+ f (t, xt), t 6= τk, k ∈ N,
x(τ+k ) = x(τk)+ Ek(x(τk)), t = τk,

(1)

where A(t, x(t)) = diag[a1(t, x(t)), a2(t, x(t)), . . . , an(t, x(t))], ai ∈ C(R × R,R) is ω-periodic; f = (f1, f2, . . . , fn)T,
f : R × BC → Rn and f (t, xt) is ω-periodic whenever x is ω-periodic; xt is defined by xt(θ) = x(t + θ) for θ ∈ R. By
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this definition, it is easy to see that, if x ∈ BC , then xt ∈ BC for any t ∈ R. x(τ+k ) represents the right limit of x(t) at the point
τk, Ek = (E1k , E

2
k , . . . , E

n
k ) ∈ C(R

n
+
,Rn
−
) (here Rn

−
= {(x1, . . . , xn)T : xi ≤ 0, 1 ≤ i ≤ n}). We assume that there exists an

integer p > 0 such that τk+p = τk + ω, Ek+p = Ek, where 0 < τ1 < τ2 < · · · < τp < ω.
The paper is organized as follows. In Section 2, we list some preliminaries involving the famous Krasnoselskii fixed point

theory and some assumptions and lemmas. In Section 3, by employing the Krasnoselskii fixed point theory, we investigate
the existence of at least one positive periodic solution and we study the existence of multiple periodic solutions for the
impulsive functional differential equation (1) in Section 4. In Section 5, we give some conclusions.

2. Preliminaries

In this section, we make some preparations for the following sections. First, we give the following related definition and
the famous fixed point theorem that will be needed in our arguments.

Definition. Let X be Banach space and K be a closed, nonempty subset of X; K is said to be a cone if
(i) αu+ βv ∈ K for all u, v ∈ K and all α, β > 0
(ii) u,−u ∈ K imply u = 0.

Theorem A (Krasnoselskii Fixed Point Theorem [12]). Let X be a Banach space, and let K be a cone in X. Suppose that Ω1 andΩ2
are open subsets of X such that 0 ∈ Ω1 ⊂ Ω̄1 ⊂ Ω2. Suppose that

T : K ∩ (Ω̄2 \Ω1)→ K

is a completely continuous operator and satisfies either
(i) ‖Tx‖ ≥ ‖x‖ for any x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≤ ‖x‖ for any x ∈ K ∩ ∂Ω2; or
(ii) ‖Tx‖ ≤ ‖x‖ for any x ∈ K ∩ ∂Ω1 and ‖Tx‖ ≥ ‖x‖ for any x ∈ K ∩ ∂Ω2.
Then T has a fixed point in K ∩ (Ω̄2 \Ω1).

To obtain our main results, we make the following assumptions throughout this paper.
(H1) There exist continuous ω-periodic functions a`i (t), a

L
i (t), such that a

`
i (t) ≤ ai(t, x) ≤ a

L
i (t) and

∫ ω
0 a

`
i (t)dt > 0, for

1 ≤ i ≤ n,
(H2) fi(t, xt) is a continuous function of t for each x ∈ BC(R,Rn+).
(H3) fi(t, φt)

∫ ω
0 ai(s, x(s))ds ≤ 0 for all (t, φ) ∈ R× BC(R,Rn

+
), 1 ≤ i ≤ n.

(H4) For any L > 0 and ε > 0, there exists a δ > 0 such that [φ,ψ ∈ BC, ‖φ‖ ≤ L, ‖ψ‖ ≤ L, ‖φ − ψ‖ < δ, 0 ≤ s ≤ ω]
imply |fi(s, φs)− fi(s, ψs)| < ε, 1 ≤ i ≤ n.

First, we have the following lemma that will be needed in our arguments.

Lemma 2.1. The function x(t) is anω-periodic solution of (1) if and only if x(t) is anω-periodic solution of the following system:

x(t) =
∫ t+ω

t
G(t, s)f (s, xs)ds+

p∑
j=1

G(t, τmj + nω)Ej(x(τmj)), (2)

where

G(t, s) = diag[G1(t, s),G2(t, s), . . . ,Gn(t, s)], (3)

and

Ej(x) = diag
[
E1j (x), E

2
j (x), . . . , E

p
j (x)

]
.

Proof. The proof of sufficiency is similar to that in [11], so we omit it. Here we only prove the necessity part. If x(t) =
(x1(t), . . . , xn(t))T ∈ X is a solution of system (1), then[

xi(t) exp
{
−

∫ t

0
ai(u, x(u))du

}]′
= exp

{
−

∫ t

0
ai(u, x(u))du

}
fi(t, xt), t 6= τk, i = 1, 2, . . . , n. (4)

Integrating both sides of (4) over [t, t + ω], we obtain

xi(s) exp
{
−

∫ s

0
ai(u, x(u))du

}∣∣∣∣τm1+nω
t

+ xi(s) exp
{
−

∫ s

0
ai(u, x(u))du

}∣∣∣∣τm2+nω
τm1+nω

+ · · · + xi(s) exp
{
−

∫ s

0
ai(u, x(u))du

}∣∣∣∣t+ω
τmp+nω

=

∫ t+ω

t
exp

{
−

∫ s

0
ai(u, x(u))du

}
fi(s, xs)ds,
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where τmj + nω ∈ (t, t + ω), mj ∈ {1, 2, . . . , p}, j = 1, 2, . . . , p, n ∈ N . Then

xi(t) exp
{
−

∫ t

0
ai(u, x(u))du

}[
exp

{
−

∫ t+ω

t
ai(u, x(u))du

}
− 1

]
−

p∑
j=1

1xi(τmj) exp
{
−

∫ τmj+nω

0
ai(u, x(u))du

}
=

∫ t+ω

t
exp

{
−

∫ s

0
ai(u, x(u))du

}
fi(s, xs)ds,

where1xi(τk) = xi(τ+k )− xi(τk). In turn, this expression can be transformed into

xi(t) =
∫ t+ω

t
Gi(t, s)fi(s, xs)ds+

p∑
j=1

Gi(t, τmj + nω)E
i
j(x(τmj)),

where

Gi(t, s) =
exp{−

∫ s
t ai(u, x(u))du}

exp{−
∫ ω
0 ai(u, x(u))du} − 1

, 1 ≤ i ≤ n. � (5)

By the definition of G in (3) and (5), it is clear that G(t, s) = G(t + ω, s+ ω) for all (t, s) ∈ R2 and by (H3),

Gi(t, s)fi(u, φu) ≥ 0

for (t, s) ∈ R2 and (u, φ) ∈ R× BC(R,Rn
+
).

Let

Ai = max{|a`i (t)|, |a
L
i (t)|}, t ∈ [0, ω], 1 ≤ i ≤ n.

Then by direct calculation and (H1), we get

mi :=
exp{−

∫ ω
0 Ai(u)du}

| exp{−
∫ ω
0 a

L
i (u)du} − 1|

≤ |Gi(t, s)| ≤
exp{

∫ ω
0 Ai(u)du}

| exp{−
∫ ω
0 a

`
i (u)du} − 1|

=: Mi, (6)

where a`i , a
L
i are defined in (H1).

We define

σ = min

{
exp

{
−2

∫ ω

0
Ai(u)du

}
| exp{−

∫ ω
0 a

`
i (u)du} − 1|

| exp{−
∫ ω
0 a

L
i (u)du} − 1|

, 1 ≤ i ≤ n

}
; (7)

then it is clear that 0 < σ < 1.
Define also

X = {x = (x1(t), . . . , xn(t))T ∈ PC(R,Rn) : x(t + ω) = x(t), t ∈ R}

with the norm ‖x‖ =
∑n
i=1 |xi|0, where |xi|0 = supt∈[0,ω] |xi(t)|, and

K = {x ∈ X : xi(t) ≥ σ |xi|0, t ∈ [0, ω], x = (x1, x2, . . . , xn)T}. (8)

One may readily verify that X is a Banach space and K is a cone.
Moreover, define, for r a positive number,Ωr by

Ωr = {x ∈ K : ‖x‖ < r}.

Note that ∂Ωr = {x ∈ K : ‖x‖ = r}.
Let the map T : K → X be defined by

(Tx)(t) =
∫ t+ω

t
G(t, s)f (s, xs)ds+

p∑
j=1

G(t, τmj + nω)Ej(x(τmj)), (9)

for x ∈ K , t ∈ R, and let

(Tx) = (T1x, T2x, . . . , Tnx)T.

Then it can be immediately obtained from the assumptions (H3) and (H4) that the map T is completely continuous. On the
other hand, it follows from Lemma 2.1 that x∗(t) = (x∗1(t), . . . , x

∗
n(t))

T is a positive ω-periodic solution of (1) if and only if
x∗(t) is a fixed point of the operator T .

Lemma 2.2. The mapping T maps K into K , i.e., TK ⊂ K .
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Proof. For any x ∈ K , it is easy to see that Tx ∈ K . From (6) and (9), we have

|Tix|0 ≤ Mi

∫ ω

0
|fi(s, xs)|ds+Mi

p∑
j=1

|E ij(x(τmj))|.

Noting that Gi(t, s)fi(u, φu) ≥ 0, we can also obtain

(Tix)(t) ≥ mi

∫ ω

0
|fi(s, xs)|ds+mi

p∑
j=1

|E ij(x(τmj))|

≥
mi
Mi
|Tix|0 ≥ σ |Tix|0.

Therefore, TK ⊂ K . The proof is complete. �

Lemma 2.3. If there exists η > 0 such that∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ(τmj))| ≥ η‖φ‖, for φ ∈ K ,

then

‖Tx‖ ≥ mη‖x‖, for x ∈ K ,

where m = min1≤i≤nmi and mi is defined in (6).

Proof. If x ∈ K , then

(Tix)(t) ≥ mi

∫ t+ω

t
|fi(s, xs)|ds+mi

p∑
j=1

|E ij(x(τmj))|

= mi

∫ ω

0
|fi(s, xs)|ds+mi

p∑
j=1

|E ij(x(τmj))|.

Thus, we have

‖Tx‖ = sup
t∈R

n∑
i=1

|(Tix)(t)| ≥
n∑
i=1

[
mi

∫ ω

0
|fi(s, xs)|ds+mi

p∑
j=1

|E ij(x(τmj))|

]

≥ m

[∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x(τmj))|

]
≥ mη‖x‖. �

Lemma 2.4. If there exists a sufficiently small ε > 0 and any number r > 0 such that∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ(τmj))| ≤ εr, for φ ∈ K ∩ ∂Ωr ,

then

‖Tx‖ ≤ Mε‖x‖, for x ∈ K ∩ ∂Ωr ,

where M = max1≤i≤nMi and Mi is defined in (6).

Proof. Following the ideas in the proof of Lemma 2.3, we obtain the assertion. �

For the sake of convenience, we introduce the following notations:

fν = lim
‖φ‖→ν

inf
φ∈K

∫ ω
0 |f (s, φs)|ds
‖φ‖

, Eν = lim
‖φ‖→ν

inf
φ∈K

p∑
j=1
|Ej(φ)|

‖φ‖
,

f ν = lim
‖φ‖→ν

sup
φ∈K

∫ ω
0 |f (s, φs)|ds
‖φ‖

, Eν = lim
‖φ‖→ν

sup
φ∈K

p∑
j=1
|Ej(φ)|

‖φ‖
,

where ν denotes either 0 or∞.
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3. Existence of at least one periodic solution

Theorem 3.1. If

(P1) f0 = E0 = ∞ and (P2) f∞ = E∞ = 0

hold, then (1) has at least one positive ω-periodic solution.

Proof. Since f0 = E0 = ∞, one can find an r0 > 0 such that∫ ω

0
|f (s, φs)|ds ≥ η1‖φ‖ and

p∑
j=1

|Ej(φ)| ≥ η2‖φ‖, for φ ∈ K , 0 < ‖φ‖ ≤ r0,

where the constants η1, η2 satisfy 2mηi > 1, i = 1, 2. Choose a constant η > 0 satisfying η = min{2η1, 2η2}. Then∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ)| ≥
η

2
‖φ‖ +

η

2
‖φ‖ = η‖φ‖.

Therefore, by Lemma 2.3, we obtain

‖Tx‖ ≥ mη‖x‖ > ‖x‖, for x ∈ K ∩ ∂Ωr0 .

Moreover, using f∞ = E∞ = 0, we know there exist N1 > r0 and ε1, ε2 > 0 such that∫ ω

0
|f (s, φs)|ds ≤ ε1‖φ‖ and

p∑
j=1

|Ej(φ)| ≤ ε2‖φ‖, for φ ∈ K , ‖φ‖ ≥ N1.

Choose ε = max{2ε1, 2ε2} satisfying 0 < ε ≤ 1
2M ; then∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ)| ≤ ε‖φ‖.

Take

r1 > N1 + 1+ 2M sup
‖φ‖<N1
φ∈K

[∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ)|

]
.

If x ∈ K ∩ ∂Ωr1 , then

‖Tx‖ ≤ M

[∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)|

]

= M[ρ(I1)+ ρ(I2)] ≤
r1
2
+
‖x‖
2
= ‖x‖,

where ρ(Ii) = [
∫ ω
0 |f (s, xs)|ds +

∑p
j=1 |Ej(x)|]|x∈Ii , i = 1, 2 and I1 = {x ∈ K , ‖x‖ < N1}, I2 = {x ∈ K , ‖x‖ ≥ N1}. This

implies that ‖Tx‖ ≤ ‖x‖ for any x ∈ K ∩ ∂Ωr1 .
Therefore, under the conditions (P1) and (P2), T satisfies all the requirements in Theorem A; then T has a fixed point in

K ∩ (Ω̄r1 \Ωr0). We complete the proof. �

Theorem 3.2. If

(P3) f∞ = E∞ = ∞ and (P4) f 0 = E0 = 0

hold, then (1) has at least one positive ω-periodic solution.

Proof. By (P4), there exist r2 > 0 and sufficiently small ε1, ε2 > 0, such that∫ ω

0
|f (s, φs)|ds ≤ ε1‖φ‖ ≤ ε1r2 and

p∑
j=1

|Ej(φ)| ≤ ε2‖φ‖ ≤ ε2r2, for φ ∈ K , 0 < ‖φ‖ ≤ r2.

Choose ε = max{2ε1, 2ε2} satisfying 0 < ε ≤ 1
M , and we have∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ)| ≤ εr2.
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Then, by Lemma 2.4, we have

‖Tx‖ ≤ Mε‖x‖ ≤ ‖x‖, for x ∈ K ∩ ∂Ωr2 .

Next, by (P3), there exists an r3 > r2 > 0 such that∫ ω

o
|f (s, φs)|ds ≥ η1‖φ‖ and

p∑
j=1

|Ej(φ)| ≥ η2‖φ‖, for φ ∈ K , ‖φ‖ ≥ r3,

where ηi, i = 1, 2 are chosen so that 2mηi > 1. Take η = min{2η1, 2η2}; then∫ ω

o
|f (s, φs)|ds+

p∑
j=1

|Ej(φ)| ≥ η‖φ‖.

It follows from Lemma 2.3 that

‖Tx‖ ≥ mη‖x‖ > ‖x‖, for x ∈ K ∩ ∂Ωr3 .

Thus, by Theorem A, we know that (1) has a positive ω-periodic solution. �

In order to obtain more results, we introduce two extra assumptions in the following:

(A1) There exists d1 > 0 such that∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ(τmj))| >
d1
m
, for σd1 ≤ ‖φ‖ ≤ d1,

(A2) There exists d2 > 0 such that∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ(τmj))| <
d2
M
, for ‖φ‖ ≤ d2,

where σ , m, M are defined in (7), Lemma 2.3 and Lemma 2.4, respectively.

Theorem 3.3. If (A1) and (A2) hold, then (1) has at least one positive ω-periodic solution.

Proof. Without loss of generality, we may assume that d2 < d1. If x ∈ K ∩ ∂Ωd2 , then, by (A2), we get

‖Tx‖ ≤ M

[∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)|

]
< M

d2
M
= d2 = ‖x‖.

In particular, ‖Tx‖ < ‖x‖ for all x ∈ K
⋂
∂Ωd2 .

On the other hand, by (A1), one has

‖Tx‖ ≥ m

[∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)|

]
> m

d1
m
= d1 = ‖x‖,

which produces ‖Tx‖ > ‖x‖ for all x ∈ K
⋂
∂Ωd1 . Therefore, by Theorem A, we obtain the conclusion, and this completes

the proof. �

Theorem 3.4. If

(P5) f 0 = α1 ∈
[
0,
1
2M

)
, E0 = α2 ∈

[
0,
1
2M

)
,

and

(P6) f∞ = β1 ∈
(
1
2mσ

,∞

)
, E∞ = β2 ∈

(
1
2mσ

,∞

)
hold, then (1) has at least one positive ω-periodic solution.

Proof. By (P5), for any ε > 0 there exists a sufficiently small d2 > 0 such that

sup
x∈K

∫ ω
0 |f (s, xs)|ds
‖x‖

< α1 +
ε

2
and sup

x∈K

p∑
j=1
|Ej(x)|

‖x‖
< α2 +

ε

2
, for ‖x‖ ≤ d2.
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Choose α = max{2α1, 2α2} and ε = 1
M − α > 0. Then

sup
x∈K


∫ ω
0 |f (s, xs)|ds
‖x‖

+

p∑
j=1
|Ej(x)|

‖x‖

 < α + ε =
1
M
;

that is,∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)| <
‖x‖
M
≤
d2
M
, for ‖x‖ ≤ d2.

So, (A2) is satisfied.
By (P6), there exists a sufficiently large d1 > 0 such that

inf
x∈K

∫ ω
0 |f (s, xs)|ds
‖x‖

> β1 −
ε

2
and inf

x∈K

p∑
j=1
|Ej(x)|

‖x‖
> β2 −

ε

2
, for ‖x‖ ≥ σd1.

Choose β = min{2β1, 2β2} and ε = β − 1
mσ > 0. Then

inf
x∈K


∫ ω
0 |f (s, xs)|ds
‖x‖

+

p∑
j=1
|Ej(x)|

‖x‖

 > β − ε =
1
mσ
;

that is,∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)| >
‖x‖
mσ
≥
σd1
mσ
=
d1
m
.

Therefore, (A1) holds. Now, the assertion follows from Theorem 3.3. �

Theorem 3.5. If

(P7) f0 = α3 ∈
(
1
2mσ

,∞

)
, E0 = α4 ∈

(
1
2mσ

,∞

)
,

and

(P8) 0 ≤ f∞ = β3 <
1
2M

, 0 ≤ E∞ = β4 <
1
2M

hold, then (1) has at least one positive ω-periodic solution.

Proof. By (P7), for any ε > 0 there exists a sufficiently small d1 > 0 such that

inf
x∈K

∫ ω
0 |f (s, xs)|ds
‖x‖

> α3 −
ε

2
and inf

x∈K

p∑
j=1
|Ej(x)|

‖x‖
> α4 −

ε

2
, for 0 < ‖x‖ ≤ d1.

Choose α = min{2α3, 2α4} and ε = α − 1
mσ > 0. Then

inf
x∈K


∫ ω
0 |f (s, xs)|ds
‖x‖

‖x‖ +

p∑
j=1
|Ej(x)|

‖x‖

 > α − ε =
1
mσ

, for 0 < ‖x‖ ≤ d1;

that is,∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)| >
σd1
mσ
=
d1
m
, for σd1 ≤ ‖x‖ ≤ d1,

which satisfies (A1).
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Again, by (P8), there exists a sufficiently large d such that

sup
x∈K

∫ ω
0 |f (s, xs)|ds
‖x‖

< β3 +
ε

2
and sup

x∈K

p∑
j=1
|Ej(x)|

‖x‖
< β4 +

ε

2
, for ‖x‖ > d.

Choose β = max{2β3, 2β4} and ε = 1
M − β > 0. Then

sup
x∈K


∫ ω
0 |f (s, xs)|ds
‖x‖

+

p∑
j=1
|Ej(x)|

‖x‖

 < β + ε, for ‖x‖ > d.

In the following, we consider two cases to prove (A2) to be satisfied:

(i) supx∈K
[∫ ω
0 |f (s, xs)|ds+

∑p
j=1 |Ej(x)|

]
<∞,

(ii) supx∈K
[∫ ω
0 |f (s, xs)|ds+

∑p
j=1 |Ej(x)|

]
= ∞.

The bounded case is clear. If case (ii) is valid, then there exists y ∈ BC(R,Rn
+
), ‖y‖ = d2 > d such that∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)| ≤
∫ ω

0
|f (s, ys)|ds+

p∑
j=1

|Ej(y)|, for 0 < ‖x‖ ≤ ‖y‖ = d2.

Since ‖y‖ = d2 > d, then we have∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)| ≤
∫ ω

0
|f (s, ys)|ds+

p∑
j=1

|Ej(y)| <
‖y‖
M
=
d2
M
, for 0 < ‖x‖ ≤ d2,

which implies that condition (A2) holds. Therefore, by Theorem 3.3 we complete the proof. �

Theorem 3.6. If (P1) and (P8) hold, then (1) has at least one positive ω-periodic solution.

Proof. From (P1) and the proof of Theorem 3.1, we know that ‖Tx‖ ≥ ‖x‖ for all x ∈ K ∩ ∂Ωr0 .
Furthermore, from (P8) and the proof of Theorem 3.5, we know that∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)| <
r1
M
, for ‖x‖ ≤ r1,

and

‖Tx‖ ≤ M

[∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)|

]
< M

r1
M
= r1 = ‖x‖,

which implies that ‖Tx‖ < ‖x‖ for all x ∈ K ∩ ∂Ωr1 . This completes the proof. �

Similarly to Theorem 3.6, one immediately has the following consequences.

Theorem 3.7. If (P3) and (P5) hold, then (1) has at least one positive ω-periodic solution.

Theorem 3.8. If (P2) and (P7) hold, then (1) has at least one positive ω-periodic solution.

Theorem 3.9. If (P4) and (P6) hold, then (1) has at least one positive ω-periodic solution.

Summarizing the above results, one can easily obtain the following result.

Corollary 3.1. If one of the following pairs

(P1) and (P2); (P3) and (P4); (P5) and (P6); (P7) and (P8); (P1) and (P8);
(P3) and (P5); (P2) and (P7); (P4) and (P6); (A1) and (A2)

is valid, then system (1) has at least one positive ω-periodic solution.
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4. Existence of multiple periodic solutions

Theorem 4.1. If (P2), (P4) and (A1) hold, then (1) has at least two positive ω-periodic solutions.
Proof. By (P4), for any ε1, ε2 > 0 there exists r4 < d1 such that∫ ω

0
|f (s, φs)|ds ≤ ε1‖φ‖, and

p∑
j=1

|Ej(φ)| ≤ ε2‖φ‖, for φ ∈ K , 0 < ‖φ‖ ≤ r4.

Choose ε = max{2ε1, 2ε2} and 0 < ε ≤ 1
M . Then∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ)| ≤ ε‖φ‖.

Therefore, by Lemma 2.4, we obtain

‖Tx‖ ≤ Mε‖x‖ ≤ ‖x‖, for x ∈ K ∩ ∂Ωr4 .

Moreover, from (P3), there exists an N2 > d1 such that∫ ω

0
|f (s, φs)|ds ≤ ε1‖φ‖ and

p∑
j=1

|Ej(φ)| ≤ ε2‖φ‖, for ‖φ‖ ≥ N2.

Choose ε = max{2ε1, 2ε2} and 0 < ε ≤ 1
2M . Then∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ)| ≤ ε‖φ‖, for ‖φ‖ ≥ N2.

Take

r5 > N2 + 1+ 2M sup
‖φ‖<N2
φ∈K

[∫ ω

0
|f (s, φs)|ds+

p∑
j=1

|Ej(φ)|

]
.

If x ∈ K ∩ ∂Ωr5 , then

‖Tx‖ ≤ M

[∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)|

]

= M[ρ(I1)+ ρ(I2)] ≤
r5
2
+
‖x‖
2
= ‖x‖,

where ρ(Ii) =
[∫ ω
0 |f (s, xs)|ds+

∑p
j=1 |Ej(x)|

]
|x∈Ii , and I1 = {x ∈ K , ‖x‖ < N2}, I2 = {x ∈ K , ‖x‖ ≥ N2}, which shows that

‖Tx‖ ≤ ‖x‖ for all x ∈ K ∩ ∂Ωr5 .
DenoteΩd1 = {x ∈ X : ‖x‖ < d1}. Then, by (A1), for any x ∈ K ∩ ∂Ωd1 , we have

‖Tx‖ ≥ m

[∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)|

]
> m

d1
m
= d1 = ‖x‖,

which yields ‖Tx‖ > ‖x‖ for all x ∈ K ∩ ∂Ωd1 . By Theorem A, T has a fixed point x1 in K ∩ (Ωd1 \Ωr4) and has a fixed point
x2 in K ∩ (Ω r5 \Ωd1). Moreover, from the above, we know that r5 > N2 > d1 > r4. Therefore, system (1) has two positive
ω-periodic solutions satisfying 0 < ‖x1‖ < d1 < ‖x2‖. This completes the proof. �

Then next consequence is presented below; the proof parallels that of Theorem 4.1, and is therefore omitted for reasons of
space.

Theorem 4.2. If (P1), (P3) and (A2) hold, then (1) has at least two ω-periodic solutions.

Theorem 4.3. If (P6), (P7) and (A2) hold, then (1) has at least two positive ω-periodic solutions.
Proof. From (P6) and the proof of Theorem 3.4, it follows that there exists a sufficiently large d1 > d2, such that∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)| >
d1
m
, for σd1 ≤ ‖x‖ ≤ d1.

That is, (A1) is valid. So, ‖Tx‖ > ‖x‖ for all x ∈ K ∩ ∂Ωd1 .
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From (P7) and the proof of Theorem 3.5, one can find a sufficiently small d∗1 ∈ (0, d2) such that∫ ω

0
|f (s, xs)|ds+

p∑
j=1

|Ej(x)| >
d∗1
m
, for σd∗1 ≤ ‖x‖ ≤ d

∗

1,

which satisfies (A1). So we have ‖Tx‖ > ‖x‖ for all x ∈ K ∩ ∂Ωd∗1 .
Incorporating (A2), we know that T has a fixed point x1 in K ∩ (Ωd2 \Ωd∗1 ) and has a fixed point x2 in K ∩ (Ωd1 \Ωd2).

That is, system (1) has two positive ω-periodic solutions satisfying d∗1 < ‖x1‖ < d2 < ‖x2‖ < d1. �

From the arguments in the above proof, we have the following consequence.

Theorem 4.4. If (P5), (P8) and (A1) hold, then (1) has at least two positive ω-periodic solutions.

Theorem 4.5. If (P1), (P6) and (A2) hold, then (1) has at least two positive ω-periodic solutions.

Proof. LetΩr∗ = {x ∈ X : ‖x‖ < r∗}, where r∗ < d2. By assumption (P1) and the proof of Theorem3.1, we know that ‖Tx‖ ≥
‖x‖ for all x ∈ K ∩ ∂Ωr∗ .
Let Ωd1 = {x ∈ X : ‖x‖ < d1}. By assumption (P6) and the proof of Theorem 3.4, we can see that

∫ ω
0 |f (s, xs)|ds +∑p

j=1 |Ej(x)| >
d1
m for σd1 ≤ ‖x‖ ≤ d1. Incorporating (A2) and the proof of Theorem 3.3, we know that there exist two

positive ω-periodic solutions. �

The following statements are immediately obtained by applying similar arguments as used in the proof of Theorem 4.5.

Theorem 4.6. If (P3), (P7) and (A2) hold, then (1) has at least two positive ω-periodic solutions.

Theorem 4.7. If (P2), (P5) and (A1) hold, then (1) has at least two positive ω-periodic solutions.

Theorem 4.8. If (P4), (P8) and (A1) hold, then (1) has at least two positive ω-periodic solutions.

Corollary 4.1. If one of the following pairs

(P1), (P3) and (A2); (P1), (P6) and (A2); (P3), (P7) and (A2); (P2), (P4) and (A1);
(P2), (P5) and (A1); (P4), (P8) and (A1); (P5), (P8) and (A1); (P6), (P7) and (A2)

is valid, then system (1) has at least two positive ω-periodic solution.

5. Conclusions

In this paper, by using the famous Krasnoselskii fixed point theorem, we have investigated the existence andmultiplicity
of positive periodic solutions for n-dimensional functional differential equations with impulses and have obtained some
easily verifiable sufficient criteria which extend previous results. The methodology which we employed in studying the
functional differential equations without impulses in [9] can bemodified to establish similar sufficient criteria for impulsive
functional differential equations. It is worth mentioning that there are still many problems that remain open in this vital
field except for the results obtained in this paper: for example, whether or not the combination of (P1) f0 = E0 = ∞ and
(P4) f 0 = E0 = 0 can ensure the existence of a periodic solution, and whether or not our concise criteria can guarantee the
stability of positive periodic solutions. More efforts are still needed in the future.
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