518 research outputs found

    BL Lac Objects in the Synchrotron Proton Blazar Model

    Get PDF
    We calculate the spectral energy distribution (SED) of electromagnetic radiation and the spectrum of high energy neutrinos from BL Lac objects in the context of the Synchrotron Proton Blazar Model. In this model, the high energy hump of the SED is due to accelerated protons, while most of the low energy hump is due to synchrotron radiation by co-accelerated electrons. To accelerate protons to sufficiently high energies to produce the high energy hump, rather high magnetic fields are required. Assuming reasonable emission region volumes and Doppler factors, we then find that in low-frequency peaked BL Lacs (LBLs), which have higher luminosities than high-frequency peaked BL Lacs (HBLs), there is a significant contribution to the high frequency hump of the SED from pion photoproduction and subsequent cascading, including synchrotron radiation by muons. In contrast, in HBLs we find that the high frequency hump of the SED is dominated by proton synchrotron radiation. We are able to model the SED of typical LBLs and HBLs, and to model the famous 1997 flare of Markarian 501. We also calculate the expected neutrino output of typical BL Lac objects, and estimate the diffuse neutrino intensity due to all BL Lacs. Because pion photoproduction is inefficient in HBLs, as protons lose energy predominantly by synchrotron radiation, the contribution of LBLs dominates the diffuse neutrino intensity. We suggest that nearby LBLs may well be observable with future high-sensitivity TeV gamma-ray telescopes.Comment: 33 pages, 20 Figures. Astropart. Phys., accepte

    The size of the proton - closing in on the radius puzzle

    Get PDF
    We analyze the recent electron-proton scattering data from Mainz using a dispersive framework that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a continued fraction analysis of these data. We find a small electric proton charge radius, r_E^p = 0.84_{-0.01}^{+0.01} fm, consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analyses. We also extract the proton magnetic radius, r_M^p = 0.86_{-0.03}^{+0.02} fm, consistent with earlier determinations based on dispersion relations.Comment: 4 pages, 2 figures, fit improved, small modifications, section on continued fractions modified, conclusions on the proton charge radius unchanged, version accepted for publication in European Physical Journal

    Characterization of large area avalanche photodiodes in X-ray and VUV-light detection

    Get PDF
    The present manuscript summarizes novel studies on the application of large area avalanche photodiodes (LAAPDs) to the detection of X-rays and vacuum ultraviolet (VUV) light. The operational characteristics of four different LAAPDs manufactured by Advanced Photonix Inc., with active areas of 80 and 200 mm^2 were investigated for X-ray detection at room temperature. The best energy resolution was found to be in the 10-18% range for 5.9 keV X-rays. The LAAPD, being compact, simple to operate and with high counting rate capability (up to about 10^5/s), proved to be useful in several applications, such as low-energy X-ray detection, where they can reach better performance than proportional counters. Since X-rays are used as reference in light measurements, the gain non-linearity between 5.9 keV X-rays and light pulses was investigated. The gain ratio between X-rays and VUV light decreases with gain, reaching 10 and 6% variations for VUV light produced in argon (~128 nm) and xenon (~172 nm), respectively, for a gain 200, while for visible light (~635 nm) the variation is lower than 1%. The effect of temperature on the LAAPD performance was investigated. Relative gain variations of about -5% per Celsius degree were observed for the highest gains. The excess noise factor was found to be independent on temperature, being between 1.8 and 2.3 for gains from 50 to 300. The energy resolution is better for decreasing temperatures due mainly to the dark current. LAAPDs were tested under intense magnetic fields up to 5 T, being insensitive when used in X-ray and visible-light detection, while for VUV light a significant amplitude reduction was observed at 5 T.Comment: 25 pages, 40 figures, submitted to JINS

    Possible origins of macroscopic left-right asymmetry in organisms

    Full text link
    I consider the microscopic mechanisms by which a particular left-right (L/R) asymmetry is generated at the organism level from the microscopic handedness of cytoskeletal molecules. In light of a fundamental symmetry principle, the typical pattern-formation mechanisms of diffusion plus regulation cannot implement the "right-hand rule"; at the microscopic level, the cell's cytoskeleton of chiral filaments seems always to be involved, usually in collective states driven by polymerization forces or molecular motors. It seems particularly easy for handedness to emerge in a shear or rotation in the background of an effectively two-dimensional system, such as the cell membrane or a layer of cells, as this requires no pre-existing axis apart from the layer normal. I detail a scenario involving actin/myosin layers in snails and in C. elegans, and also one about the microtubule layer in plant cells. I also survey the other examples that I am aware of, such as the emergence of handedness such as the emergence of handedness in neurons, in eukaryote cell motility, and in non-flagellated bacteria.Comment: 42 pages, 6 figures, resubmitted to J. Stat. Phys. special issue. Major rewrite, rearranged sections/subsections, new Fig 3 + 6, new physics in Sec 2.4 and 3.4.1, added Sec 5 and subsections of Sec

    Characterization of large area avalanche photodiodes in X-ray and VUV-light detection

    Get PDF
    The present manuscript summarizes novel studies on the application of large area avalanche photodiodes (LAAPDs) to the detection of X-rays and vacuum ultraviolet (VUV) light. The operational characteristics of four different LAAPDs manufactured by Advanced Photonix Inc., with active areas of 80 and 200 mm^2 were investigated for X-ray detection at room temperature. The best energy resolution was found to be in the 10-18% range for 5.9 keV X-rays. The LAAPD, being compact, simple to operate and with high counting rate capability (up to about 10^5/s), proved to be useful in several applications, such as low-energy X-ray detection, where they can reach better performance than proportional counters. Since X-rays are used as reference in light measurements, the gain non-linearity between 5.9 keV X-rays and light pulses was investigated. The gain ratio between X-rays and VUV light decreases with gain, reaching 10 and 6% variations for VUV light produced in argon (~128 nm) and xenon (~172 nm), respectively, for a gain 200, while for visible light (~635 nm) the variation is lower than 1%. The effect of temperature on the LAAPD performance was investigated. Relative gain variations of about -5% per Celsius degree were observed for the highest gains. The excess noise factor was found to be independent on temperature, being between 1.8 and 2.3 for gains from 50 to 300. The energy resolution is better for decreasing temperatures due mainly to the dark current. LAAPDs were tested under intense magnetic fields up to 5 T, being insensitive when used in X-ray and visible-light detection, while for VUV light a significant amplitude reduction was observed at 5 T.Comment: 25 pages, 40 figures, submitted to JINS

    Characterization of large area avalanche photodiodes in X-ray and VUV-light detection

    Get PDF
    The present manuscript summarizes novel studies on the application of large area avalanche photodiodes (LAAPDs) to the detection of X-rays and vacuum ultraviolet (VUV) light. The operational characteristics of four different LAAPDs manufactured by Advanced Photonix Inc., with active areas of 80 and 200 mm^2 were investigated for X-ray detection at room temperature. The best energy resolution was found to be in the 10-18% range for 5.9 keV X-rays. The LAAPD, being compact, simple to operate and with high counting rate capability (up to about 10^5/s), proved to be useful in several applications, such as low-energy X-ray detection, where they can reach better performance than proportional counters. Since X-rays are used as reference in light measurements, the gain non-linearity between 5.9 keV X-rays and light pulses was investigated. The gain ratio between X-rays and VUV light decreases with gain, reaching 10 and 6% variations for VUV light produced in argon (~128 nm) and xenon (~172 nm), respectively, for a gain 200, while for visible light (~635 nm) the variation is lower than 1%. The effect of temperature on the LAAPD performance was investigated. Relative gain variations of about -5% per Celsius degree were observed for the highest gains. The excess noise factor was found to be independent on temperature, being between 1.8 and 2.3 for gains from 50 to 300. The energy resolution is better for decreasing temperatures due mainly to the dark current. LAAPDs were tested under intense magnetic fields up to 5 T, being insensitive when used in X-ray and visible-light detection, while for VUV light a significant amplitude reduction was observed at 5 T.Comment: 25 pages, 40 figures, submitted to JINS

    The First VERITAS Telescope

    Full text link
    The first atmospheric Cherenkov telescope of VERITAS (the Very Energetic Radiation Imaging Telescope Array System) has been in operation since February 2005. We present here a technical description of the instrument and a summary of its performance. The calibration methods are described, along with the results of Monte Carlo simulations of the telescope and comparisons between real and simulated data. The analysis of TeV Îł\gamma-ray observations of the Crab Nebula, including the reconstructed energy spectrum, is shown to give results consistent with earlier measurements. The telescope is operating as expected and has met or exceeded all design specifications.Comment: Accepted by Astroparticle Physic

    Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in √s = 7 TeV pp collisions with the ATLAS detector

    Get PDF
    A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fb−1 of proton–proton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results

    Search for displaced vertices arising from decays of new heavy particles in 7 TeV pp collisions at ATLAS

    Get PDF
    We present the results of a search for new, heavy particles that decay at a significant distance from their production point into a final state containing charged hadrons in association with a high-momentum muon. The search is conducted in a pp-collision data sample with a center-of-mass energy of 7 TeV and an integrated luminosity of 33 pb^-1 collected in 2010 by the ATLAS detector operating at the Large Hadron Collider. Production of such particles is expected in various scenarios of physics beyond the standard model. We observe no signal and place limits on the production cross-section of supersymmetric particles in an R-parity-violating scenario as a function of the neutralino lifetime. Limits are presented for different squark and neutralino masses, enabling extension of the limits to a variety of other models.Comment: 8 pages plus author list (20 pages total), 8 figures, 1 table, final version to appear in Physics Letters

    Measurement of the polarisation of W bosons produced with large transverse momentum in pp collisions at sqrt(s) = 7 TeV with the ATLAS experiment

    Get PDF
    This paper describes an analysis of the angular distribution of W->enu and W->munu decays, using data from pp collisions at sqrt(s) = 7 TeV recorded with the ATLAS detector at the LHC in 2010, corresponding to an integrated luminosity of about 35 pb^-1. Using the decay lepton transverse momentum and the missing transverse energy, the W decay angular distribution projected onto the transverse plane is obtained and analysed in terms of helicity fractions f0, fL and fR over two ranges of W transverse momentum (ptw): 35 < ptw < 50 GeV and ptw > 50 GeV. Good agreement is found with theoretical predictions. For ptw > 50 GeV, the values of f0 and fL-fR, averaged over charge and lepton flavour, are measured to be : f0 = 0.127 +/- 0.030 +/- 0.108 and fL-fR = 0.252 +/- 0.017 +/- 0.030, where the first uncertainties are statistical, and the second include all systematic effects.Comment: 19 pages plus author list (34 pages total), 9 figures, 11 tables, revised author list, matches European Journal of Physics C versio
    • 

    corecore