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The size of the proton - closing in on the radius puzzle
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Abstract. We analyze the recent electron-proton scattering data from Mainz using a dispersive framework
that respects the constraints from analyticity and unitarity on the nucleon structure. We also perform a
continued fraction analysis of these data. We find a small electric proton charge radius, rpE = 0.84+0.01

−0.01 fm,
consistent with the recent determination from muonic hydrogen measurements and earlier dispersive analy-
ses. We also extract the proton magnetic radius, rpM = 0.86+0.02

−0.03 fm, consistent with earlier determinations
based on dispersion relations.

PACS. 13.40.Gp , 14.20.Dh, 11.55.Fv

The proton charge radius is a fundamental quantity
of physics. It is truly remarkable that despite decade long
experimental and theoretical efforts its precise value is not
yet determined. The recent controversy about the size of
the proton was triggered by the precision measurement of
the Lamb shift in muonic hydrogen that led to a “small”
charge radius, rpE = 0.84184(67) fm [1]. This result came
as a big surprise as it was in stark contrast to the com-
monly accepted “large” CODATA value of 0.8768(69) fm
[2], based on measurements of the Lamb shift in electronic
hydrogen and the analysis of electron-proton scattering
data. The large value was further strengthened by the
high precision electron-proton scattering measurements at
MAMI-C [3,4]. The analysis of these data including two-
photon corrections led to rpE = 0.876(8) fm. These au-
thors also found a magnetic radius of the proton that
came out much smaller than commonly accepted values,
rpM = 0.803(17) fm.

On the theoretical side, a precise ab initio calculation
based on lattice QCD is not yet available due to various
conceptual problems to be overcome like the treatment
of disconnected contributions that feature importantly in
isoscalar quantities. See, e.g., [5] for a recent work. A dif-
ferent framework, that was pioneered by Höhler and col-
laborators a long time ago, are dispersion relations (DRs)
for the nucleon electromagnetic form factors [6]. In such
type of approach, smaller radii were always favored, and
the most recent and sophisticated DR calculation led to
values consistent with the ones from muonic hydrogen,
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rpE = 0.844+0.008
−0.004 fm [7]. The value for the proton’s mag-

netic radius was rpM = 0.854 ± 0.005 fm, consistent with,
e.g., the determination based on continued fractions by
Sick [8]. Note, however, that the conformal mapping tech-
nique to analyze the nucleon form factors led to a large
value of the proton charge radius [9].

Given this puzzling situation, in this Letter we will
re-analyze the MAMI data of Bernauer et al. [3] using
dispersion relations. Our main focus will be on the cor-
rect treatment of the analytical structure of the nucleon
form factors that is driven by the two-pion continuum. Its
important role was already stressed by Frazer and Fulco,
who were able to predict the ρ-resonance and its influ-
ence on the nucleons’ structure a long time ago [10]. What
has often been overlooked since this seminal work was the
large enhancement of the two-pion continuum on the left
wing of the ρ-resonance due to a close-by pole on the sec-
ond Riemann sheet in the elastic pion-nucleon scattering
amplitude. This enhancement amounts for roughly half
of the nucleon isovector size [6]. This important effect is
also recovered in chiral perturbation theory, the effective
field theory of QCD at low energies [11]. We consider it
therefore of utmost importance to include this effect in the
re-analysis of the MAMI data. Of course, in light of the
muon g−2 measurement at BNL [12], one might speculate
about the influence of new physics as the muon data are
more sensitive to such effects, but first one has to exclude
possible conventional explanations – and we will offer such
a possibility here.
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The nucleon matrix element of the electromagnetic
current

〈N(p′)|jemµ |N(p)〉

= ieū(p′)

(

γµF1(t) + i
σµνq

ν

2mN
F2(t)

)

u(p), (1)

is parameterized in terms of the Dirac, F1(t), and Pauli,
F2(t), form factors, with t = (p′ − p)2 = −Q2 the in-
variant momentum transfer squared, and mN is the nu-
cleon mass. For electron-nucleon scattering, we have Q2 ≥

0. F
p/n
1 (0) and F

p/n
2 (0) are given in terms of the pro-

ton/neutron electric charge and anomalous magnetic mo-
ment, respectively. For the later analysis, it is useful to
separate the form factors in their isoscalar and the isovec-
tor parts, F s

i = (F p
i + Fn

i )/2 and F v
i = (F p

i − Fn
i )/2

for i = 1, 2, correspondingly. The differential cross section
is given most compactly in terms of the Sachs form fac-
tors GE(t) = F1(t)− τF2(t), GM (t) = F1(t) + F2(t), with
τ = −t/4m2

N , so that

dσ

dΩ
=

(

dσ

dΩ

)

Mott

τ

ǫ(1 + τ)

[

G2
M (Q2) +

ǫ

τ
G2

E(Q
2)
]

, (2)

where ǫ = [1+2(1+ τ) tan2(Θ/2)]−1 is the virtual photon
polarization, Θ is the electron scattering angle in the lab-
oratory frame, and (dσ/dΩ)Mott is the Mott cross section,
which corresponds to scattering on a point-like particle.
The electric and magnetic radii of the proton, that are in
the focus of this Letter, are given by

rpE,M =

(

−6

GE,M (0)

dGE,M (Q2)

dQ2

∣

∣

∣

∣

Q2=0

)1/2

. (3)

To analyze the cross section data from Mainz based
on Eq. (2), we use unsubtracted dispersion relations for
the nucleon form factors. For a generic form factor in the
spacelike region, these take the form

F (t) =
1

π

∫

∞

t0

ImF (t′)dt′

t′ − t
, (4)

with t0 = 4M2
π (9M2

π) the pertinent isovector (isoscalar)
threshold and Mπ is the charged pion mass. The basic
quantity in this relation is the spectral function Im F (t)
that parameterizes all physical effects that contribute to
the nucleon form factors. The most general form of the
spectral function allowed by unitarity is a sum of con-
tinua and poles. This is exactly the form of the spec-
tral function we use in our analysis. The low mass con-
tinua (2π,KK̄, ρπ) are included exactly, whereas higher
mass continua are approximated by effective vector me-
son poles.

In our DR approach, the complete isoscalar and isovec-
tor parts of the Dirac and Pauli form factors, respectively,
are parameterized as

F s
i (t) =

∑

V =KK̄,ρπ,s1,s2,..

aVi
m2

V − t
,

F v
i (t) =

∑

V =v1,v2,..

aVi
m2

V − t
+

ai + bi(1 − t/ci)
−2

2(1− t/di)
, (5)

where i = 1, 2. Each pole term comes, in principle, with
three parameters – the two residua and the mass. While
the low-mass pole terms can be interpreted as physical
vector mesons, i.e. the ω and the φ, the higher mass poles
are effective poles that parameterize unknown continuum
contributions. The residua for the light vector mesons ω, φ
are related to more or less known coupling constants, see
e.g. Ref. [7] for a detailed discussion. Therefore, we con-
strain the residua of the light isoscalar vector mesons as:
0.5GeV2 < |aω1 | < 1GeV2, |aω2 | < 0.5GeV2 [13] and

|aφ1 | < 2GeV2, |aφ2 | < 1GeV2 [14]. Additional poles below

1GeV2 can be excluded since no other vector mesons exist
in this region. At higher masses, the widths get broader
and with growing distance to the space-like region their
position cannot be resolved precisely. Therefore this part
of the spectral function can only be described by effec-
tive pole terms. Besides the vector meson pole terms, our
DR approach includes the two-pion continuum, the KK̄-
and ρπ-continua. The two latter contributions to the form
factors are also parameterized by pole terms with fixed
masses and residua, as was done before, see Refs. [15,16,
14]. The last term in Eq. (5) is an appropriate parameter-
ization of the two-pion continuum, that also includes the
ρ-pole as discussed above. The parameters are:

a1 = 1.084, a2 = 5.800, b1 = 0.079, b2 = 0.751,

c1 = 0.300GeV2, c2 = 0.225GeV2,

d1 = 0.522GeV2, d2 = 0.562GeV2 .

Note that this parameterized form of the low-mass con-
tinua is only used for faster numerical evaluations. The
total number of isoscalar and isovector poles is determined
from the stability criterion of Ref. [17], which in a nutshell
can be described as using the lowest numbers of parame-
ters that are required to obtain a good fit to the data. The
superconvergence relations enforcing the correct asymp-
totic power behavior of the form factors,

∫

∞

t0

ImFi(t) t
n dt = 0 , i = 1, 2, (6)

with n = 0 for F1 and n = 0, 1 for F2, are included as
well.

With this DR ansatz, we reconstruct the differential
cross sections and fit to the MAMI data for ep scatter-
ing and simultaneously to the world data for the neutron
form factors. The fits are done in the one-photon approx-
imation via the Rosenbluth formula where the data con-
tains most of the higher order corrections [3]. However,
the Coulomb corrections are replaced in our analysis by
a better approximation as was done by [18]. For a recent
discussion on this point, see Refs. [19,4]. We remark that
two-photon exchange corrections are expected to be small
for the charge radius extraction, see eg. Refs. [20,21], but
somewhat more sizeable for the magnetic radius [4,22].
This requires further study.

We fit to the Mainz data floating the normalization
of the individual data sets by at most ±4% (in most
cases this normalization change is less than 1%), using
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Fig. 1. Form factors from our dispersion relation analysis in
comparison to world form factor data as given by [7] (updated
to include also the more recent data [31]).

the 31 normalization parameters given in Ref. [27]. Em-
ploying the aforementioned stability criterion, we include
5 isoscalar and 4 isovector resonances with in total 15 ad-
ditional parameters. We impose the constraints from the
normalizations, from the superconvergence relations and
the fact that the masses of the lowest isoscalar poles, the
ω(782) and the φ(1020) are known. For details of the fit-
ting procedure, see Ref. [7]. This fit gives a good descrip-
tion of the proton cross section and neutron form factor
data with χ2

red = 2.2. The form factors arising from this
fit are shown in Fig. 1. The corresponding fit parame-
ters are given in Tab. 1. The obtained residua of ω and

V mv aV
1 aV

2 V mV aV
1 aV

2

ω 0.783 0.747 0.003 v1 1.205 0.826 -2.557
φ 1.019 0.221 -0.014 v2 2.140 -0.502 0.438
s1 1.638 0.977 0.234 v3 1.000 -0.381 -0.342
s2 2.400 -0.501 -0.077 v4 1.193 -0.227 0.831
s3 1.033 -0.540 -0.333

Table 1. Fit parameters from dispersion analysis (cf. Eq. (5)).
Masses mV are given in GeV and couplings aV

i in GeV2.

φ are in agreement with their couplings to the nucleon,
as described above. All remaining poles have residua with
natural size. Varying the number of pole terms in both
isospin channels does not affect the radii significantly but
is included in our error estimate.

To address the issue of the theoretical uncertainties of
our analysis, we vary the isovector and isoscalar contin-
uum contributions in all possible combinations and repeat
the fit to obtain the corresponding ranges. The two-pion
continuum is varied by 5% below the first minimum of the
pion-nucleon scattering amplitudes and 20% above it. We
note that at present a Roy-Steiner machinery is set up to
improve the representation of the t-channel pion-nucleon
phase shifts required here [23], but for our investigation
we use an updated version of the two-pion continuum rep-
resentation from Ref. [24], including new data for the pion
vector form factor from KLOE [25] and BABAR [26]. The
error in the two-pion continuum from the difference be-

tween the KLOE and BABAR data sets is well below the
assigned 5-20% uncertainty. It is also important to note
that the Roy-Steiner analysis of Ref. [23] has shown that
the KH80 solution used here is internally consistent. The
KK̄- and ρπ-continua are varied by 20%. We have also
varied the number of effective pole terms and obtained
stable results.

The extracted proton radii are:

rpE = 0.84+0.01
−0.01 fm , rpM = 0.86+0.02

−0.03 fm . (7)

For the neutron magnetic radius, we obtain rnM = 0.88±
0.05 fm , consistent with previous analyses. The neutron
electric radius is very insensitive to the variation of the
continua. We obtain the value (rnE)

2 = −0.127 fm2 . To
examine the influence of the neutron data, we also fit the
DR model exclusively to the electron-proton scattering
cross sections. The effect on the proton radii is less than
half a percent on the numbers given above. If the super-
convergence relations, Eq. (6), are not enforced, the same
radii are obtained within the quoted uncertainties.

To assess the stability of the results obtained, we make
use of a continued fraction (CF) approach as advocated,
e.g., by Sick [18]. Every rational function can be repre-
sented by a general continued fraction function and in
contrast to a polynomial, this can generate poles. There-
fore it can well approximate the data beyond the threshold
where the imaginary part sets in. We fit the following in-
verse CF ansatz [18],

F (t) =
1

1 +
f1t

1 +
f2t

1 + ...

(8)

to our data, in order to examine under which circum-
stances and how exactly the generation of isolated poles
suffices to simulate the so important two-pion continuum
contribution. In particular, we have investigated the de-
pendence of the fits on the highest value of Q2 (denoted
Q2

max from here on) for which data is included. This de-
pendence can be used to demonstrate the need to include
imaginary parts in the fit functions and include data be-
yond the two-pion threshold to obtain a stable fit. The
electric radius derived from such fits shows only small
fluctuations for varying Q2

max, as shown in Fig. 2. For
the magnetic radius, we do not find stable results with
varying number of continued fractions and thus will not
consider it any more. Remarkably, the electric radius of
the proton show large fluctuations in the CF approach
for Q2

max ≤ 0.1GeV2, but then converges quickly towards
values consistent with the ones based on the theoretically
preferable DR approach. These results might at first ap-
pear surprising, as naively a low Q2

max might be favored,
because the relevant information for the radius extraction
is related to the region of small momentum transfer. On
the other hand, the uncertainty due to the normalization
has obviously a stronger influence on the radius for lower
Q2. The less stable values at very low Q2

max in the DR
approach might be explained by this normalization un-
certainty or simply by an insufficient amount of data. At
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higher values of Q2
max the fluctuations in the derived radii

increase. We assume that this is due to an insufficient
number of free fit parameters for more data since the fluc-
tuations are stronger for lower n. Increasing the data range
also increases the χ2

red slightly. Of course, this could either
show the inability of the models to describe the data at
higher momentum transfers or it could be due to a bad
estimation of errors in this data. We cannot separate these
effects, which may both apply here: (i) it is obvious that
the fit functions are only approximate and (ii) the errors
of the data are scaled to yield a χ2

red ≈ 1 for a spline fit
and thus contain a model-dependence [27]. Therefore, the
χ2 values or confidence limits are not used to weight the
extracted radii. The results are weighted equally and only
the spikes of the fits with χ2

red ≃ 1.7 are omitted, less than
3 for each set of results. The remaining χ2

red values for all
fits with Q2

max ≥ 0.1 GeV2 vary, e.g., for the CFs of order
5 between χ2

red = 1.03 and 1.64. The average and standard
deviation of the radius values extracted for Q2

max between
0.1 GeV2 and the complete data set range up to 0.98 GeV2

are rpE = 0.85 ± 0.01 fm for n = 5, n = 8 and n = 12
(to obtain these results, we have utilized the improved
Coulomb corrections as described before). These numbers
are in good agreement with the values obtained via the DR
approach and the recent muonic hydrogen measurements.
We are presently studying the application of the confor-
mal mapping technique of Hill and Paz [9] to the MAMI
data to further sharpen our conclusion on the value of the
proton charge radius [32].

In this Letter, we have reconsidered the proton radii
determination from the new MAMI electron-proton scat-
tering data, using two very different methods. First, we
have used a dispersive representation of the nucleon form
factors that includes the so important constraints from
unitarity and analyticity – these were not considered in
the fit functions utilized in Refs. [3,4]. Including also data
from the world data set on the neutron form factors, we
achieve a good description of the cross section data. We
have also performed an analysis of the systematic uncer-

tainties by allowing for generous variations in the ππ, K̄K
and πρ contributions to the spectral functions. The re-
sulting electric and magnetic radii, cf. Eq. (7) are in stark
contrast to the ones obtained in Refs. [3,4], but our results
are consistent with all earlier dispersive analyses of the nu-
cleon form factors [28,29,30,7]. Also, the small value for
rpE is consistent with the recent muonic hydrogen mea-
surement [1]. We have also applied the continuous frac-
tion method to the data. By construction, it can emulate
narrow poles but to account for the so important two-
pion continuum, one has to choose a sufficiently large fit
range, Q2

max ≥ 0.1GeV2, to achieve stable results. Again,
this method leads to values for the proton charge radius
in agreement with the dispersive approach. We conclude
that the small proton electric radius is indeed favored if
analyticity and unitarity are properly included into the
description of the nucleon electromagnetic form factors.
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