629 research outputs found

    Staged storage and magma convection at Ambrym Volcano, Vanuatu

    Get PDF
    New mineral-melt thermobarometry and mineral chemistry data are presented for basaltic scoriae erupted from the Mbwelesu crater of Ambrym volcano, Vanuatu, during persistent lava lake activity in 2005 and 2007. These data reveal crystallisation conditions and enable the first detailed attempt at reconstruction of the central magma plumbing system of Ambrym volcano. Pressures and temperatures of magma crystallisation at Ambrym are poorly constrained. This study focuses on characterising the magma conditions underlying the quasipermanent lava lakes at the basaltic central vents, and examines petrological evidence for magma circulation. Mineral-melt equilibria for clinopyroxene, olivine and plagioclase allow estimation of pressures and temperatures of crystallisation, and reveal two major regions of crystallisation, at 24–29 km and 11–18 km depth, in agreement with indications from earthquake data of crustal storage levels at c.25–29 km and 12–21 km depth. Temperature estimates are ~1150–1170 ºC for the deeper region, and ~1110 1140 ºC in the midcrustal region, with lower temperatures of ~1090–1100 ºC for late-stage crystallisation. More primitive plagioclase antecrysts are thought to sample a slightly more mafic melt at sub-Moho depths. Resorption textures combined with effectively constant mafic mineral compositions suggest phenocryst convection in a storage region of consistent magma composition. In addition, basalt erupted at Ambrym has predominantly maintained a constant composition throughout the volcanic succession. This, coupled with recurrent periods of elevated central vent activity on the scale of months, suggest frequent magmatic recharge via steady-state melt generation at Ambrym

    A new test for equilibrium based on clinopyroxene-melt pairs: Clues on the solidification temperatures of Etnean alkaline melts at post-eruptive conditions

    Get PDF
    We have performed new global regression analyses to calibrate a model of equilibrium between clinopyroxene and co-existing melt. Then we have applied this model to a restricted but important range of clinopyroxene and melt compositions from Mt. Etna volcano. The degree of disequilibrium is determined through the comparison between components “predicted” for clinopyroxene via regression analyses of clinopyroxene-liquid pairs in equilibrium conditions, with those “measured” in the analyzed crystals. The model is tested using compositions not included into the calibration dataset, i.e., clinopyroxene-melt pairs obtained from equilibrium and cooling rate experiments conducted at ambient pressure on an Etnean trachybasalt. The experiments were duplicated at the NNO+1.5 and QFM oxygen buffering conditions estimated for magmas at Mt. Etna. Both equilibrium and disequilibrium clinopyroxene-melt pairs from the experiments were also used as input data for one of the most recent thermometers based on the Jd-DiHd exchange reaction. Results from calculations indicate that, under rapid cooling rate conditions, clinopyroxenes do not equilibrate with the melt. Consequently, the thermometers predict higher crystallization temperatures compared to the final experimental temperature, prior to rapid quenching of the experiment. The systematic difference between expected and measured compositions and temperatures allows us to calibrate a model that describes undercooling based on disequilibrium exchange reactions. We use this new tool to estimate the thermal history of naturally cooled lava flows and dikes at Mt. Etna volcano

    The temperature of the Icelandic mantle from olivine-spinel aluminum exchange thermometry

    Get PDF
    New crystallization temperatures for four eruptions from the Northern Volcanic Zone of Iceland are determined using olivine-spinel aluminum exchange thermometry. Differences in the olivine crystallization temperatures between these eruptions are consistent with variable extents of cooling during fractional crystallization. However, the crystallization temperatures for Iceland are systematically offset to higher temperatures than equivalent olivine-spinel aluminum exchange crystallization temperatures published for MORB, an effect that cannot be explained by fractional crystallization. The highest observed crystallization temperature in Iceland is 1399 ± 20°C. In order to convert crystallization temperatures to mantle potential temperature, we developed a model of multilithology mantle melting that tracks the thermal evolution of the mantle during isentropic decompression melting. With this model, we explore the controls on the temperature at which primary melts begin to crystallize, as a function of source composition and the depth from which the magmas are derived. Large differences (200°C) in crystallization temperature can be generated by variations in mantle lithology, a magma's inferred depth of origin, and its thermal history. Combining this model with independent constraints on the magma volume flux and the effect of lithological heterogeneity on melt production, restricted regions of potential temperature-lithology space can be identified as consistent with the observed crystallization temperatures. Mantle potential temperature is constrained to be 1480−30+37 °C for Iceland and 1318−32+44 °C for MORB.O.S. was supported by a Title A Fellowship from Trinity College Cambridge and a Geology Option Postdoctoral Fellowship at Caltech

    Upper mantle magma storage and transport under a Canarian shield-volcano, Teno, Tenerife (Spain)

    Get PDF
    We use clinopyroxene-liquid thermobarometry, aided by petrography and mineral major element chemistry, to reconstruct the magma plumbing system of the late Miocene, largely mafic Teno shield-volcano on the island of Tenerife. Outer rims of clinopyroxene and olivine phenocrysts show patterns best explained by decompression-induced crystallization upon rapid ascent of magmas from depth. The last equilibrium crystallization of clinopyroxene occurred in the uppermost mantle, from ∼20 to 45 km depth. We propose that flexural stresses or, alternatively, thermomechanical contrasts create a magma trap that largely confines magma storage to an interval roughly coinciding with the Moho at ∼15 km and the base of the long-term elastic lithosphere at ∼40 km below sea level. Evidence for shallow magma storage is restricted to the occurrence of a thick vitric tuff of trachytic composition emplaced before the Teno shield-volcano suffered large-scale flank collapses. The scenario developed in this study may help shed light on some unresolved issues of magma supply to intraplate oceanic volcanoes characterized by relatively low magma fluxes, such as those of the Canary, Madeira and Cape Verde archipelagoes, as well as Hawaiian volcanoes in their postshield stage. The data presented also support the importance of progressive magmatic underplating in the Canary Islands

    The 1874-1876 volcano-tectonic episode at Askja, North Iceland: Lateral flow revisited

    Get PDF
    The Askja volcanic system, North Iceland, experienced a volcano-tectonic episode between 1874 and 1876, the climax of which was a rhyolitic, phreatoplinian to Plinian eruption at Askja central volcano on 28–29 March 1875. Fissure eruptions also occurred in 1875, producing the Nýjahraun lava, 45–65 km north of Askja. The Nýjahraun basalt is indistinguishable, in terms of whole-rock major elements, from the small-volume basaltic eruptions that took place at Askja in the early 20th century. It has been suggested that all of these basalts originated from a shallow magma chamber beneath Askja, with the Nýjahraun eruptions being fed by northward-propagating lateral dykes. It has also been conjectured that the Holuhraun lava, located at the southern tip of the Askja volcanic system 15–25 km south of Askja, was connected with the 1874–1876 Askja volcano-tectonic episode. We re-examine these interpretations in light of new whole-rock, glass and melt inclusion analyses from samples collected along the length of the Askja volcanic system. Glasses from Nýjahraun and the Askja 20th century eruptions are geochemically distinct. We suggest that the Askja 20th century basalts mixed with evolved melts in the crust, while the Nýjahraun magma evolved without such interactions. The Holuhraun basalt is more similar to lavas erupted on the Bárðarbunga-Veiðivötn volcanic system than to postglacial basalts from Askja, indicating that particular geochemical signatures are not necessarily confined to the tectonic or structural surface expression of single volcanic systems. This has important implications for the identification and delineation of individual volcanic systems beneath the northwest sector of Vatnajökull.Access to the Edinburgh Ion Microprobe Facility was funded by NERC grant IMF386/1109. MEH was supported by NERC studentship NE/F008929/1.This is the published version of an article originally published in Geochemistry, Geophysics, Geosystems and is also available at http://onlinelibrary.wiley.com/doi/10.1002/ggge.20151/abstract. Copyright 2013 American Geophysical Union

    Magmas Erupted during the Main Pulse of Siberian Traps Volcanism were Volatile-poor

    Get PDF
    The eruption of the Siberian Traps Large Igneous Province (SLIP) at the Permo-Triassic boundary was synchronous with environmental degradation and the largest known mass extinction in the geological record. The volatile emissions associated with these eruptions have been linked to the environmental change yet we understand little of their source and magnitude and how they varied with time. There are a number of possible sources for the volatiles that were emitted during the eruptions: the mantle (including metasomatized lithosphere), volatile-rich sediments (through metamorphism or direct assimilation) and the crustal basement. To assess the relative importance of these sources (with the exception of the metamorphic outgassing source), we have conducted a geochemical study of melt inclusions hosted by clinopyroxene in Siberian Traps low-Ti tholeiitic lavas and sills of the Khakanchansky, Ayansky and Khonnamakitsky Formations. The magmas were not emplaced into or erupted onto evaporite deposits, in contrast to samples studied previously. The trace element compositions of the melt inclusions are highly variable compared with the uniform whole-rocks, exhibiting a wide range of La/Yb ratios from 0·7 to 9·5. The melt geochemistry is consistent with relatively large degrees of partial melting of a dominantly peridotite mantle source. A negative Nb anomaly indicates a degree of crustal contamination, but there is no evidence for contamination by volatile-rich evaporites. Enrichment of some of the melts in large ion lithophile elements (Ba, Sr) indicates their interaction with a fluid. We suggest that, consistent with the observed depletion in other incompatible trace elements in the melt inclusions, the volatile concentrations in the melts were relatively low, and that subsequently the melts underwent variable degrees of degassing in the crust. Overall, the melts are more volatile-poor than those reported previously from the SLIP and were erupted after the first “pulse” of more volatile-rich magmas described by Sobolev et al. (2015). These volatile-poor magmas may have been widespread across the region during the Siberian Traps eruptions once a pyroxenite component in the mantle source had been exhausted

    Origin of basaltic magmas of Perşani volcanic field, Romania: A combined whole 6 rock and mineral scale investigation

    Get PDF
    The Perşani volcanic field is a low-volume flux monogenetic volcanic field in the Carpathian–Pannonian region, 24 eastern-central Europe. Volcanic activity occurred intermittently from1200 ka to 600 ka, forming lava flow fields, 25 scoria cones andmaars. Selected basalts fromthe initial and younger active phaseswere investigated for major and 26 trace element contents and mineral compositions. Bulk compositions are close to those of the primitive magmas; 27 only 5–12% olivine and minor spinel fractionation occurred at 1300–1350 °C, followed by clinopyroxenes at about 28 1250 °C and 0.8–1.2 GPa. Melt generation occurred in the depth range from 85–90 km to 60 km. The estimated 29 mantle potential temperature, 1350–1420 °C, is the lowest in the Pannonian Basin. It suggests that no thermal 30 anomaly exists in the uppermantle beneath the Perşani area and that themaficmagmas were formed by decom- 31 pressionmelting under relatively thin continental lithosphere. Themantle source of themagmas could be slightly 32 heterogeneous, but is dominantly variously depleted MORB-source peridotite, as suggested by the olivine and 33 spinel composition. Based on the Cr-numbers of the spinels, two coherent compositional groups (0.38–0.45 and 34 0.23–0.32, respectively) can be distinguished that correspond to the older and younger volcanic products. This in- 35 dicates a change in themantle source region during the volcanic activity as also inferred from the bulk rockmajor 36 and trace element data. The younger basaltic magmas were generated by lower degree of melting, from a deeper 37 and compositionally slightly different mantle source compared to the older ones. The mantle source character of 38 the Perşanimagmas is akin to that ofmany other alkaline basalt volcanic fields in theMediterranean close to oro- 39 genic areas. The magma ascent rate is estimated based on compositional traverses across olivine xenocrysts using 40 variations of Ca content. Two heating events are recognized; the first one lasted about 1.3 years implying heating 41 of the lower lithosphere by the uprisingmagma,whereas the second one lasted only 4–5 days,whichcorresponds 42 to the time of magma ascent through the continental crust. The alkaline mafic volcanismin the Perşani volcanic 43 field could have occurred as a response to the formation of a narrow rupture in the lower lithosphere, possibly 44 as a far-field effect of the dripping of dense continental lithospheric material beneath the Vrancea zone. Upper 45 crustal extensional stress-field with reactivation of normal faults at the eastern margin of the Transylvanian 46 basin could enhance the rapid ascent of the mafic magmas

    Basaltic Volcaniclastics from the Challenger Deep Forearc Segment, Mariana Convergent Margin: Implications for Tectonics and Magmatism of the Southernmost Izu–Bonin–Mariana Arc

    Get PDF
    Convergent margin igneous activity is generally limited to 100–200 km from the trench except where spreading ridges are subducted or in association with Subduction-Transform Edge Propagators (STEP faults). The southernmost Mariana forearc, facing the Challenger Deep, subducts Mesozoic seafloor and is not in a STEP fault setting but includes at least one site where tholeiitic basalts recently erupted close to the trench, the SE Mariana Forearc Rift (SEMFR). We present evidence of young basaltic volcanism from ca. 100 km west of SEMFR. Shinkai 6500 diving during YK13-08 (Dive 1363) recovered volcaniclastics from 5.5 to 6 km deep in the inner wall of the Mariana Trench, 50 km NE of the Challenger Deep. Glassy fragments are tholeiitic basalts similar to MORB except for much higher contents of magmatic water (approx. 2% H2O vs. 2O in MORB) and enrichments in trace elements Rb-Cs-Ba, K, Pb, and Sr. Dive 1363 glasses are similar to basalts from SEMFR erupted near the trench and to Mariana Trough backarc basin basalts. Basalt fragments and palagonitized matrix dominate the studied samples, but small xenocrysts and xenoliths derived from mantle peridotite and Neogene volcanics are also present, probably torn from the vent walls. Dive 1363 hyaloclastites erupted at 3–6 km water depth accompanied by vigorous degassing of volatiles, most likely CO2. These results provide further evidence that the forearc adjacent to the Challenger Deep has been invaded by asthenospheric mantle and derivative hydrous melts. Extension, hydration, and melt invasion combine to further weaken Challenger Deep forearc lithosphere. Combined effects of: (i) absence of strong, cold lithosphere of the overriding plate; (ii) rapid rollback of a narrow, short subducted slab; and (iii) weak coupling between the subducting Pacific plate and the overriding Mariana plate may be responsible for the great depth of the Challenger Deep
    corecore