2,671 research outputs found

    Sedimentology of the Triassic–Jurassic boundary beds in Pinhay Bay (Devon, SW England)

    Get PDF
    Sedimentology of the Triassic–Jurassic boundary beds in Pinhay Bay(Devon, SW England). Proceedings of the Geologists’ Association, 112. 349–360. New exposures in Pinhay Bay (SE Devon) of the White Lias (Langport Member of the Lilstock Formation)and basal Blue Lias reveal rapidly changing palaeoenvironments during the Triassic–Jurassic(T–J) boundary interval. During deposition of the topmost White Lias a soft seafloor of micritic mudstone was lithified and bored. The resultant hardground was locally eroded, probably in a shallow marine setting, to form a spectacular intraformational conglomerate that was itself lithified. Brief subaerial emergence then followed and produced a fissured and pitted top surface to the White Lias. The regression was short lived and rapid transgression at the base of the Blue Lias established organic-rich shale deposition with a small framboidal pyrite population and low Th/U ratios indicative of a stable, sulphidic lower water column (euxinic conditions). The White Lias/Blue Lias contact thus records a short duration, high amplitude relative sea-level change. This sea-level oscillation has also been postulated for other T–J boundary sections in Europe, although the failure to identify it in regional-scale sequence stratigraphic studies is probably due to its brief duration. Deposition of the basal beds of the Blue Lias was marked by a discrete phase of syn-sedimentary folding and small growth fault activity that may record a regional pulse of extensional tectonic activity

    The Western Irish Namurian Basin reassessed

    Get PDF
    Current basin models for the Western Irish Namurian Basin (WINB) envisage an elongate trough along the line of the present-day Shannon Estuary that was infilled with clastic sediments derived from a hinterland that lay to the W or NW. This paper argues for an alternative basin configuration with source areas to the SW supplying sediment to a basin where deepest water conditions were in northern County Clare. Rapid subsidence along the present-day Shannon Estuary ponded sediment in this area throughout the early Namurian and, only with the rapid increase of sedimentation rates within the mid-Namurian (Kinderscoutian Stage), were substantial amounts of sediment able to prograde to the NE of the basin. This alternative model better explains the overwhelming predominance of NE-directed palaeocurrents in the Namurian infill, but requires fundamental revisions to most aspects of current depositional models. Deep-water black shales (Clare Shale Formation) initially accumulated throughout the region and were progressively downlapped by an unconfined turbidite system (Ross Formation) prograding to the NE. This in turn was succeeded by an unstable, siltstone-dominated slope system (Gull Island Formation) characterized by large-scale soft-sediment deformation, which also prograded to the NE. In the northern-most basin outcrops, in northern County Clare, this early phase of basin infill was developed as a condensed succession of radiolarian-rich black shales, minor turbiditic sandstones and undisturbed siltstones. The new basin model envisages the northern exposures of County Clare to be a distal, basin floor succession whereas the traditional model considers it a relatively shallow, winnowed, basin margin succession. Later stages of basin infill consist of a series of deltaic cycles that culminate in major, erosive-based sandstone bodies (e.g. Tullig Sandstone) interpreted either as axial, deltaic feeder channels or incised valley fills genetically unrelated to the underlying deltaic facies. Within the context of the new basin model the former alternative is most likely and estimated channel depths within the Tullig Sandstone indicate that the basal erosive surface could have been generated by intrinsic fluvial scour without recourse to base-level fall. The northerly flowing Tullig channels pass down-dip into isolated channel sandbodies interbedded with wave-dominated strata that suggest the deltas of the WINB were considerably more wave-influenced than hitherto proposed. The retreat of the Tullig delta during sea-level rise saw the rapid southerly retrogradation of parasequences, as may be expected if the basin margin lay to the SW of the present-day outcrops

    Extent and duration of marine anoxia during the Frasnian– Famennian (Late Devonian) mass extinction in Poland, Germany, Austria and France

    Get PDF
    Abstract – The intensity and extent of anoxia during the two Kellwasser anoxic events has been investigated in a range of European localities using amultidisciplinary approach (pyrite framboid assay, gamma-ray spectrometry and sediment fabric analysis). The results reveal that the development of the Lower Kellwasser Horizon in the early Late rhenana Zone (Frasnian Stage) in German type sections does not always coincide with anoxic events elsewhere in Europe and, in some locations, seafloor oxygenation improves during this interval. Thus, this anoxic event is not universally developed. In contrast, the Upper Kellwasser Horizon, developed in the Late linguiformis Zone (Frasnian Stage) in Germany correlates with a European-wide anoxic event that is manifest as an intensification of anoxia in basinal locations to the point that stable euxinic conditionswere developed (for example, in the basins of the Holy Cross Mountains, Poland). The interval also saw the spread of dysoxic waters into very shallow water (for instance, reefal) locations, and it seems reasonable to link the contemporaneous demise of many marine taxa to this phase of intense and widespread anoxia. In basinal locations, euxinic conditions persisted into the earliest Famennian with little change of depositional conditions. Only in the continental margin location of Austria was anoxia not developed at any time in the Late Devonian. Consequently it appears that the Upper Kellwasser anoxic event was an epicontinental seaway phenomenon, caused by the upward expansion of anoxia from deep basinal locales rather than an ‘oceanic’ anoxic event that has spilled laterally into epicontinental settings

    Credit Supply and Demand and the Australian Economy

    Get PDF
    The paper explores the lending behaviour of financial intermediaries over the business cycle in the light of new theories emphasising agency costs. During a “credit crunch” loans from financial intermediaries are unobtainable at any price, so that credit may have a “causal” role in influencing economic outcomes in the short run. Tests of this phenomenon show that it is not supported by the Australian data. However, while credit may not “cause” economic activity it may, nevertheless, have useful leading indicator properties. This is because the demand for credit is based on expectations about future demand as well as the current cost of credit. Indeed, monetary policy operates in part via intertemporal substitution in demand, which is reflected in, though not caused by, the behaviour of credit. These properties of credit are shown to be broadly consistent with Australian data.

    Large igneous provinces and mass extinctions: an update

    Get PDF
    The temporal link between mass extinctions and large igneous provinces is well known. Here, we examine this link by focusing on the potential climatic effects of large igneous province eruptions during several extinction crises that show the best correlation with mass volcanism: the Frasnian-Famennian (Late Devonian), Capitanian (Middle Permian), end-Permian, end-Triassic, and Toarcian (Early Jurassic) extinctions. It is clear that there is no direct correlation between total volume of lava and extinction magnitude because there is always sufficient recovery time between individual eruptions to negate any cumulative effect of successive flood basalt eruptions. Instead, the environmental and climatic damage must be attributed to single-pulse gas effusions. It is notable that the best-constrained examples of death-by-volcanism record the main extinction pulse at the onset of (often explosive) volcanism (e.g., the Capitanian, end-Permian, and end-Triassic examples), suggesting that the rapid injection of vast quantities of volcanic gas (CO 2 and SO 2 ) is the trigger for a truly major biotic catastrophe. Warming and marine anoxia feature in many extinction scenarios, indicating that the ability of a large igneous province to induce these proximal killers (from CO 2 emissions and thermogenic greenhouse gases) is the single most important factor governing its lethality. Intriguingly, many voluminous large igneous province eruptions, especially those of the Cretaceous oceanic plateaus, are not associated with significant extinction losses. This suggests that the link between the two phenomena may be controlled by a range of factors, including continental configuration, the latitude, volume, rate, and duration of eruption, its style and setting (continental vs. oceanic), the preexisting climate state, and the resilience of the extant biota to change

    Changes in the Characteristics of the Australian Business Cycle: Some Lessons for Monetary Policy from the 1980s and Early 1990s

    Get PDF
    This paper examines the causes of asset price inflation and deflation in the Australian economy, their links with borrowing and recent problems that have arisen for banks’ balance sheets. Implications for the business cycle and monetary policy are drawn out in some detail. The difficulties encountered are attributed partly to the once-for-all transition from regulated to deregulated financial markets, and it is argued that it would be wrong to extrapolate recent developments into the future . It is suggested that arguments to make asset price inflation an explicit objective of monetary policy are not helpful. The paper goes to point out some encouraging new trends in Australia’s linkages with the rest of the world. Export performance has been greatly enhanced by longer-term reforms and exchange rate depreciation during the 1980s.

    Geochemical and ecological aspects of lower Frasnian pyrite-ammonoid level at KostomƂoty (Holy Cross Mountains, Poland)

    Get PDF
    The lower Frasnian (transitans Zone with Ancyrodella priamosica = MN 4 Zone) rhythmic basin succession of marly limestones and shales (upper SzydlĂłwek Beds) at Kostomloty, western Holy CrossMts., Central Poland, contains a record of the transgressive-hypoxic Timan Event in this drowned part of southern Laurussian shelf. The unique facies consists of organic-rich marly shales and a distinctive pyritic, goniatite level, 1.6m thick. The faunal assemblage is dominated by pyritized shells of diminutivemollusks with cephalopods (including goniatites Epitornoceras and Acanthoclymenia), buchioline bivalves (Glyptohallicardia) and styliolinids. This interval is marked by moderately low Th/U ratios and pyrite framboid size distributions suggestive of dysoxic rather than permanent euxinic conditions. The scarcity of infauna and bioturbation resulted in finely laminated sedimentary fabrics, as well as the low diversity of the presumed pioneer benthos (mostly brachiopods). In the topmost part of the SzydlĂłwek Beds, distinguished by the Styliolina coquina interbedded between limestone-biodetrital layers, the above geochemical proxies and C-isotope positive shift indicate a tendency to somewhat increased bottom oxygen deficiency and higher carbon burial rate linked with a bloom of pelagic biota during high-productivity pulse. The geochemical and community changes are a complex regional record of the initial phase of a major perturbation in the earth-ocean system during a phase of intermittently rising sea level in the early to middle Frasnian, and associated with the highest positive C-isotope ratios of the Devonian

    Liftoff and Transition Database Generation for Launch Vehicles Using Data-Fusion-Based Modeling

    Get PDF
    A data fusion technique for merging multiple data sources with differing fidelity and resolution was developed to support the production of aerodynamic line load databases for the Liftoff and Transition (LOT) flight phase of the Space Launch System (SLS). The technique uses a reduced order model based on a high-fidelity line load data set from Computational Fluid Dynamics (CFD) to predict solutions for a much larger solution space. Even higher-fidelity force and moment information (from wind-tunnel tests) is then used to adjust the model. The adjustment uses constrained optimization through the method of Lagrange multipliers in order to minimize the deviation of the line load distribution from the spatially-dense CFD solution, while ensuring that the integrated force and moment values match those observed in physical wind tunnel measurements. Though the wind-tunnel data are operationally-dense (available at many flow conditions), they are spatially coarse (as only the overall forces and moments are available). Conversely, CFD for such complex configurations is expensive, and thus operationally sparse. Data fusion techniques are necessary to make the most efficient use of available information, delivering accurate results within time and resource constraints
    • 

    corecore