702 research outputs found

    Massive star formation and feedback in W49A: The source of our Galaxy's most luminous water maser outflow

    Full text link
    We present high spatial resolution mid-IR images of the ring of UCHII regions in W49A obtained at Gemini North, allowing us to identify the driving source of its powerful H2O maser outflow. These data also confirm our previous report that several radio sources in the ring are undetected in the mid-IR because they are embedded deep inside the cloud core. We locate the source of the water maser outflow at the position of the compact mid-IR peak of source G (source G:IRS1). This IR source is not coincident with any identified compact radio continuum source, but is coincident with a hot molecular core, so we propose that G:IRS1 is a hot core driving an outflow analogous to the wide-angle bipolar outflow in OMC-1. G:IRS1 is at the origin of a larger bipolar cavity and CO outflow. The water maser outflow is orthogonal to the bipolar CO cavity, so the masers probably reside near its waist in the cavity walls. Models of the IR emission require a massive protostar of 45Msun, 3e5Lsun, and an effective envelope accretion rate of 1e-3Msun/yr. Feedback from the central star could potentially drive the H2O maser outflow, but it has insufficient radiative momentum to have driven the large-scale CO outflow, requiring that this massive star had an active accretion disk over the past 10^4 yr. Combined with the spatialy resolved morphology in IR images, G:IRS1 in W49 provides compelling evidence for a massive protostar that formed by accreting from a disk, accompanied by a bipolar outflow.Comment: 14 pages, MNRAS accepte

    The physical and chemical structure of Sagittarius B2 -- VI. UCHII regions in Sgr B2

    Full text link
    The giant molecular cloud Sagittarius B2 (hereafter SgrB2) is the most massive region with ongoing high-mass star formation in the Galaxy. Two ultra-compact HII (UCHII) regions were identified in SgrB2's central hot cores, SgrB2(M) and SgrB2(N). Our aim is to characterize the properties of the HII regions in the entire SgrB2 cloud. Comparing the HII regions and the dust cores, we aim to depict the evolutionary stages of different parts of SgrB2. We use the Very Large Array in its A, CnB, and D configurations, and in the frequency band C (~6 GHz) to observe the whole SgrB2 complex. Using ancillary VLA data at 22.4 GHz and ALMA data at 96 GHz, we calculated the physical parameters of the UCHII regions and their dense gas environment. We identify 54 UCHII regions in the 6 GHz image, 39 of which are also detected at 22.4 GHz. Eight of the 54 UCHII regions are newly discovered. The UCHII regions have radii between 0.006pc0.006 {\rm pc} and 0.04pc0.04 {\rm pc}, and have emission measure between 106pccm610^{6} {\rm pc\,cm^{-6}} and 109pccm610^{9} {\rm pc\,cm^{-6}}. The UCHII regions are ionized by stars of types from B0.5 to O6. We found a typical gas density of 106109cm3\sim10^6-10^9 {\rm cm^{-3}} around the UCHII regions. The pressure of the UCHII regions and the dense gas surrounding them are comparable. The expansion timescale of these UCHII regions is determined to be 104105yr\sim10^4-10^5 {\rm yr}. The percentage of the dust cores that are associated with HII regions are 33%, 73%, 4%, and 1% for SgrB2(N), SgrB2(M), SgrB2(S), and SgrB2(DS), respectively. Two-thirds of the dust cores in SgrB2(DS) are associated with outflows. The electron densities of the UCHII regions we identified are in agreement with that of typical UCHII regions, while the radii are smaller than those of the typical UCHII regions. The dust cores in SgrB2(N) are more evolved than in SgrB2(DS) but younger than in SgrB2(M).Comment: 17 pages, 15 figure, accepted to A&

    The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)

    Get PDF
    We describe the remote facilities operated by the Southeastern Association for Research in Astronomy (SARA), a consortium of colleges and universities in the US partnered with Lowell Observatory, the Chilean National Telescope Allocation Committee, and the Instituto de Astrofísica de Canarias. SARA observatories comprise a 0.96 m telescope at Kitt Peak, Arizona; one of 0.6 m aperture on Cerro Tololo, Chile; and the 1 m Jacobus Kapteyn Telescope at the Roque de los Muchachos, La Palma, Spain. All are operated using standard VNC or Radmin protocols communicating with on-site PCs. Remote operation offers considerable flexibility in scheduling, allowing long-term observational cadences difficult to achieve with classical observing at remote facilities, as well as obvious travel savings. Multiple observers at different locations can share a telescope for training, educational use, or collaborative research programs. Each telescope has a CCD system for optical imaging, using thermoelectric cooling to avoid the need for frequent local service, and a second CCD for offset guiding. The Arizona and Chile telescopes also have fiber-fed echelle spectrographs. Switching between imaging and spectroscopy is very rapid, so a night can easily accommodate mixed observing modes. We present some sample observational programs. For the benefit of other groups organizing similar consortia, we describe the operating structure and principles of SARA, as well as some lessons learned from almost 20 years of remote operations

    The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)

    Get PDF
    We describe the remote facilities operated by the Southeastern Association for Research in Astronomy (SARA), a consortium of colleges and universities in the US partnered with Lowell Observatory, the Chilean National Telescope Allocation Committee, and the Instituto de Astrofísica de Canarias. SARA observatories comprise a 0.96 m telescope at Kitt Peak, Arizona; one of 0.6 m aperture on Cerro Tololo, Chile; and the 1 m Jacobus Kapteyn Telescope at the Roque de los Muchachos, La Palma, Spain. All are operated using standard VNC or Radmin protocols communicating with on-site PCs. Remote operation offers considerable flexibility in scheduling, allowing long-term observational cadences difficult to achieve with classical observing at remote facilities, as well as obvious travel savings. Multiple observers at different locations can share a telescope for training, educational use, or collaborative research programs. Each telescope has a CCD system for optical imaging, using thermoelectric cooling to avoid the need for frequent local service, and a second CCD for offset guiding. The Arizona and Chile telescopes also have fiber-fed echelle spectrographs. Switching between imaging and spectroscopy is very rapid, so a night can easily accommodate mixed observing modes. We present some sample observational programs. For the benefit of other groups organizing similar consortia, we describe the operating structure and principles of SARA, as well as some lessons learned from almost 20 years of remote operations

    Corrigendum: The Remote Observatories of the Southeastern Association for Research in Astronomy (SARA)

    Get PDF
    Bill Gray of Project Pluto brought to our attention an error of 0.03° in the listed latitude of our Kitt Peak telescope. While correcting the table where this occurred, we also take the opportunity to update the instrument properties and weather statistics of our remote telescope

    A Search for the Transit of HD 168443b: Improved Orbital Parameters and Photometry

    Get PDF
    The discovery of transiting planets around bright stars holds the potential to greatly enhance our understanding of planetary atmospheres. In this work we present the search for transits of HD 168443b, a massive planet orbiting the bright star HD 168443 V=6.92 with a period of 58.11 days. The high eccentricity of the planetary orbit e=0.53 significantly enhances the a-priori transit probability beyond that expected for a circular orbit, making HD 168443 a candidate for our ongoing Transit Ephemeris Refinement and Monitoring Survey (TERMS). Using additional radial velocities from Keck-HIRES, we refined the orbital parameters of this multi-planet system and derived a new transit ephemeris for HD 168443b. The reduced uncertainties in the transit window make a photometric transit search practicable. Photometric observations acquired during predicted transit windows were obtained on three nights. CTIO 1.0 m photometry acquired on 2010 September 7 had the required precision to detect a transit but fell just outside of our final transit window. Nightly photometry from the T8 0.8 m Automated Photometric Telescope (APT) at Fairborn Observatory, acquired over a span of 109 nights, demonstrates that HD 168443 is constant on a time scale of weeks. Higher-cadence photometry on 2011 April 28 and June 25 shows no evidence of a transit. We are able to rule out a non-grazing transit of HD 168443b.Comment: Accepted in ApJ. 25 pages. 8 Figure

    Optimasi Portofolio Resiko Menggunakan Model Markowitz MVO Dikaitkan dengan Keterbatasan Manusia dalam Memprediksi Masa Depan dalam Perspektif Al-Qur`an

    Full text link
    Risk portfolio on modern finance has become increasingly technical, requiring the use of sophisticated mathematical tools in both research and practice. Since companies cannot insure themselves completely against risk, as human incompetence in predicting the future precisely that written in Al-Quran surah Luqman verse 34, they have to manage it to yield an optimal portfolio. The objective here is to minimize the variance among all portfolios, or alternatively, to maximize expected return among all portfolios that has at least a certain expected return. Furthermore, this study focuses on optimizing risk portfolio so called Markowitz MVO (Mean-Variance Optimization). Some theoretical frameworks for analysis are arithmetic mean, geometric mean, variance, covariance, linear programming, and quadratic programming. Moreover, finding a minimum variance portfolio produces a convex quadratic programming, that is minimizing the objective function ðð¥with constraintsð ð 𥠥 ðandð´ð¥ = ð. The outcome of this research is the solution of optimal risk portofolio in some investments that could be finished smoothly using MATLAB R2007b software together with its graphic analysis

    Differential cross section measurements for the production of a W boson in association with jets in proton–proton collisions at √s = 7 TeV

    Get PDF
    Measurements are reported of differential cross sections for the production of a W boson, which decays into a muon and a neutrino, in association with jets, as a function of several variables, including the transverse momenta (pT) and pseudorapidities of the four leading jets, the scalar sum of jet transverse momenta (HT), and the difference in azimuthal angle between the directions of each jet and the muon. The data sample of pp collisions at a centre-of-mass energy of 7 TeV was collected with the CMS detector at the LHC and corresponds to an integrated luminosity of 5.0 fb[superscript −1]. The measured cross sections are compared to predictions from Monte Carlo generators, MadGraph + pythia and sherpa, and to next-to-leading-order calculations from BlackHat + sherpa. The differential cross sections are found to be in agreement with the predictions, apart from the pT distributions of the leading jets at high pT values, the distributions of the HT at high-HT and low jet multiplicity, and the distribution of the difference in azimuthal angle between the leading jet and the muon at low values.United States. Dept. of EnergyNational Science Foundation (U.S.)Alfred P. Sloan Foundatio

    Penilaian Kinerja Keuangan Koperasi di Kabupaten Pelalawan

    Full text link
    This paper describe development and financial performance of cooperative in District Pelalawan among 2007 - 2008. Studies on primary and secondary cooperative in 12 sub-districts. Method in this stady use performance measuring of productivity, efficiency, growth, liquidity, and solvability of cooperative. Productivity of cooperative in Pelalawan was highly but efficiency still low. Profit and income were highly, even liquidity of cooperative very high, and solvability was good

    Juxtaposing BTE and ATE – on the role of the European insurance industry in funding civil litigation

    Get PDF
    One of the ways in which legal services are financed, and indeed shaped, is through private insurance arrangement. Two contrasting types of legal expenses insurance contracts (LEI) seem to dominate in Europe: before the event (BTE) and after the event (ATE) legal expenses insurance. Notwithstanding institutional differences between different legal systems, BTE and ATE insurance arrangements may be instrumental if government policy is geared towards strengthening a market-oriented system of financing access to justice for individuals and business. At the same time, emphasizing the role of a private industry as a keeper of the gates to justice raises issues of accountability and transparency, not readily reconcilable with demands of competition. Moreover, multiple actors (clients, lawyers, courts, insurers) are involved, causing behavioural dynamics which are not easily predicted or influenced. Against this background, this paper looks into BTE and ATE arrangements by analysing the particularities of BTE and ATE arrangements currently available in some European jurisdictions and by painting a picture of their respective markets and legal contexts. This allows for some reflection on the performance of BTE and ATE providers as both financiers and keepers. Two issues emerge from the analysis that are worthy of some further reflection. Firstly, there is the problematic long-term sustainability of some ATE products. Secondly, the challenges faced by policymakers that would like to nudge consumers into voluntarily taking out BTE LEI
    corecore