24 research outputs found

    Birthday of a King

    Get PDF
    In the little village of Bethlehem,There lay a child one day,And the sky was bright with a holy light,O\u27er the place where Jesus lay:Alleluia!O how the angels sang,Alleluia! how it rang;And the sky was bright with a holy light,\u27Twas the birthday of a King. \u27Twas a humble birth-place,But oh! how much God gave us that day,From the manger bed, what a path has ledWhat a perfect holy way:Alleluia!O how the angels sang,Alleluia! how it rang;And the sky was bright with a holy light, Twas the birthday of a King

    The Jumonji-C oxygenase JMJD7 catalyzes (3S)-lysyl hydroxylation of TRAFAC GTPases

    Get PDF
    Biochemical, structural and cellular studies reveal Jumonji-C (JmjC) domain-containing 7 (JMJD7) to be a 2-oxoglutarate (2OG)-dependent oxygenase that catalyzes (3S)-lysyl hydroxylation. Crystallographic analyses reveal JMJD7 to be more closely related to the JmjC hydroxylases than to the JmjC demethylases. Biophysical and mutation studies show that JMJD7 has a unique dimerization mode, with interactions between monomers involving both N- and C-terminal regions and disulfide bond formation. A proteomic approach identifies two related members of the translation factor (TRAFAC) family of GTPases, developmentally regulated GTP-binding proteins 1 and 2 (DRG1/2), as activity-dependent JMJD7 interactors. Mass spectrometric analyses demonstrate that JMJD7 catalyzes Fe(ii)- and 2OG-dependent hydroxylation of a highly conserved lysine residue in DRG1/2; amino-acid analyses reveal that JMJD7 catalyzes (3S)-lysyl hydroxylation. The functional assignment of JMJD7 will enable future studies to define the role of DRG hydroxylation in cell growth and disease.Fil: Markolovic, Suzana. University of Oxford; Reino UnidoFil: Zhuang, Qinqin. University Of Birmingham; Reino UnidoFil: Wilkins, Sarah E.. University of Oxford; Reino UnidoFil: Eaton, Charlotte D.. University Of Birmingham; Reino UnidoFil: Abboud, Martine I.. University of Oxford; Reino UnidoFil: Katz, Maximiliano Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: McNeil, Helen E.. University Of Birmingham; Reino UnidoFil: Leśniak, Robert K.. University of Oxford; Reino UnidoFil: Hall, Charlotte. University Of Birmingham; Reino UnidoFil: Struwe, Weston B.. University of Oxford; Reino UnidoFil: Konietzny, Rebecca. University of Oxford; Reino UnidoFil: Davis, Simon. University of Oxford; Reino UnidoFil: Yang, Ming. The Francis Crick Institute; Reino Unido. University of Oxford; Reino UnidoFil: Ge, Wei. University of Oxford; Reino UnidoFil: Benesch, Justin L. P.. University of Oxford; Reino UnidoFil: Kessler, Benedikt M.. University of Oxford; Reino UnidoFil: Ratcliffe, Peter J.. University of Oxford; Reino Unido. The Francis Crick Institute; Reino UnidoFil: Cockman, Matthew E.. The Francis Crick Institute; Reino Unido. University of Oxford; Reino UnidoFil: Fischer, Roman. University of Oxford; Reino UnidoFil: Wappner, Pablo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Bioquímicas de Buenos Aires. Fundación Instituto Leloir. Instituto de Investigaciones Bioquímicas de Buenos Aires; ArgentinaFil: Chowdhury, Rasheduzzaman. University of Stanford; Estados Unidos. University of Oxford; Reino UnidoFil: Coleman, Mathew L.. University Of Birmingham; Reino UnidoFil: Schofield, Christopher J.. University of Oxford; Reino Unid

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Phylogenetic classification of the world's tropical forests

    Get PDF
    Knowledge about the biogeographic affinities of the world’s tropical forests helps to better understand regional differences in forest structure, diversity, composition, and dynamics. Such understanding will enable anticipation of region-specific responses to global environmental change. Modern phylogenies, in combination with broad coverage of species inventory data, now allow for global biogeographic analyses that take species evolutionary distance into account. Here we present a classification of the world’s tropical forests based on their phylogenetic similarity. We identify five principal floristic regions and their floristic relationships: (i) Indo-Pacific, (ii) Subtropical, (iii) African, (iv) American, and (v) Dry forests. Our results do not support the traditional neo- versus paleotropical forest division but instead separate the combined American and African forests from their Indo-Pacific counterparts. We also find indications for the existence of a global dry forest region, with representatives in America, Africa, Madagascar, and India. Additionally, a northern-hemisphere Subtropical forest region was identified with representatives in Asia and America, providing support for a link between Asian and American northern-hemisphere forests.</p

    Heparin-Induced Thrombocytopenia: Recognition, Treatment, and Prevention

    No full text

    Organic chemical microscopy: A monograph

    No full text

    Heparin-Induced Thrombocytopenia

    No full text
    corecore