1,488 research outputs found

    Temperature-dependent contact resistances in high-quality polymer field-effect transistors

    Full text link
    Contact resistances between organic semiconductors and metals can dominate the transport properties of electronic devices incorporating such materials. We report measurements of the parasitic contact resistance and the true channel resistance in bottom contact poly(3-hexylthiophene) (P3HT) field-effect transistors with channel lengths from 400 nm up to 40 μ\mum, from room temperature down to 77 K. For fixed gate voltage, the ratio of contact to channel resistance decreases with decreasing temperature. We compare this result with a recent model for metal-organic semiconductor contacts. Mobilities corrected for this contact resistance can approach 1 cm2^{2}/Vs at room temperature and high gate voltages.Comment: 10 pages, 4 figures, accepted to Appl. Phys. Let

    Nonlinear charge injection in organic field-effect transistors

    Full text link
    Transport properties of a series of poly(3-hexylthiophene) organic field effect transistors with Cr, Cu and Au source/drain electrodes were examined over a broad temperature range. The current-voltage characteristics of the injecting contacts are extracted from the dependence of conductance on channel length. With reasonable parameters, a model of hopping injection into a disordered density of localized states, with emphasis on the primary injection event, agrees well with the field and the temperature dependence of the data over a broad range of temperatures and gate voltages.Comment: 7 pages, 7 figures, sub. to J. Appl. Phy

    Gated nonlinear transport in organic polymer field effect transistors

    Full text link
    We measure hole transport in poly(3-hexylthiophene) field effect transistors with channel lengths from 3 μ\mum down to 200 nm, from room temperature down to 10 K. Near room temperature effective mobilities inferred from linear regime transconductance are strongly dependent on temperature, gate voltage, and source-drain voltage. As TT is reduced below 200 K and at high source-drain bias, we find transport becomes highly nonlinear and is very strongly modulated by the gate. We consider whether this nonlinear transport is contact limited or a bulk process by examining the length dependence of linear conduction to extract contact and channel contributions to the source-drain resistance. The results indicate that these devices are bulk-limited at room temperature, and remain so as the temperature is lowered. The nonlinear conduction is consistent with a model of Poole-Frenkel-like hopping mechanism in the space-charge limited current regime. Further analysis within this model reveals consistency with a strongly energy dependent density of (localized) valence band states, and a crossover from thermally activated to nonthermal hopping below 30 K.Comment: 22 pages, 7 figures, accepted to J. Appl. Phy

    Zero-bias anomalies in electrochemically fabricated nanojunctions

    Full text link
    A streamlined technique for the electrochemical fabrication of metal nanojunctions (MNJs) between lithographically defined electrodes is presented. The first low-temperature transport measurements in such structures reveal suppression of the conductance near zero-bias. The size of the zero-bias anomaly (ZBA) depends strongly on the fabrication electrochemistry and the dimensions of the resulting MNJ. We present evidence that the nonperturbative ZBA in atomic-scale junctions is due to a density of states suppression in the leads.Comment: 4 pages, 4 figure
    • …
    corecore