39 research outputs found

    The views of migrant health workers living in Austria and Belgium on return migration to sub-Saharan Africa

    Get PDF
    Background: The negative consequences of the brain drain of sub-Saharan African health workers for source countries are well documented and include understaffed facilities, decreased standards of care and higher workloads. However, studies suggest that, if migrated health workers eventually return to their home countries, this may lead to beneficial effects following the transfer of their acquired skills and knowledge (brain gain). The present study aims to explore the factors influencing the intentions for return migration of sub-Saharan African health workers who emigrated to Austria and Belgium, and gain further insight into the potential of circular migration. Methods: Semi-structured interviews with 27 sub-Saharan African health workers in Belgium and Austria were conducted. Results: As mentioned by the respondents, the main barriers for returning were family, structural crises in the source country, and insecurity. These barriers overrule the perceived drivers, which were nearly all pull factors and emotion driven. Despite the fact that only a minority plans to return permanently, many wish to return regularly to work in the healthcare sector or to contribute to the development of their source country. Conclusion: As long as safety and structural stability cannot be guaranteed in source countries, the number of return migrants is likely to remain low. National governments and regional organizations could play a role in facilitating the engagement of migrant health workers in the development of the healthcare system in source countries

    O ESPAÇO DO SEMINÁRIO

    Get PDF
    Introdução. – Estudo da expressão: 1.1 Sistema /vs/ Sistemas; 1.2. Terceiro sistema ou o envelope; 1.3. O segundo sistema, ou o envelope mobiliado; 1.4 O primeiro sistema, ou o envelope mobiliado e contendo usuários. – II. Estudo do conteúdo: 2.1 Programa e contrato; 2.2 Nível de superfície: o deslocamento, o fazer visual, a fala; 2.3. Nível profundo. – III. Ensaio de pôr em relação expressão e conteúdo: 3.1 Semiose e comutação; 3.2 Os polos, expressões de signos do nível profundo. – IV Conclusão.   Introduction. – I. Étude de l’expression: 1.1 Système /vs/ Systèmes ; 1.2 Le troisième système ou l’enveloppe ; 1.3 Le deuxième systeme, ou l’enveloppe meublée ; 1.4 Le premier système, ou l’enveloppe meublée et contenant des usagers. – II. Étude du contenu : 2.1 Programme et contrat ; 2.2 Niveau de surface : le déplacement, le faire visuel, la parole ; 2.3 Niveau de profundeur. – III. Essai de mise en relation de l’expression et du contenu : 3.1 Sémiose et commutation ; 3.2 Les pôles, expressions de signes du niveau profond. – IV. Conclusion

    A neural tracking and motor control approach to improve rehabilitation of upper limb movements

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Restoration of upper limb movements in subjects recovering from stroke is an essential keystone in rehabilitative practices. Rehabilitation of arm movements, in fact, is usually a far more difficult one as compared to that of lower extremities. For these reasons, researchers are developing new methods and technologies so that the rehabilitative process could be more accurate, rapid and easily accepted by the patient. This paper introduces the proof of concept for a new non-invasive FES-assisted rehabilitation system for the upper limb, called smartFES (sFES), where the electrical stimulation is controlled by a biologically inspired neural inverse dynamics model, fed by the kinematic information associated with the execution of a planar goal-oriented movement. More specifically, this work details two steps of the proposed system: an <it>ad hoc </it>markerless motion analysis algorithm for the estimation of kinematics, and a neural controller that drives a synthetic arm. The vision of the entire system is to acquire kinematics from the analysis of video sequences during planar arm movements and to use it together with a neural inverse dynamics model able to provide the patient with the electrical stimulation patterns needed to perform the movement with the assisted limb.</p> <p>Methods</p> <p>The markerless motion tracking system aims at localizing and monitoring the arm movement by tracking its silhouette. It uses a specifically designed motion estimation method, that we named Neural Snakes, which predicts the arm contour deformation as a first step for a silhouette extraction algorithm. The starting and ending points of the arm movement feed an Artificial Neural Controller, enclosing the muscular Hill's model, which solves the inverse dynamics to obtain the FES patterns needed to move a simulated arm from the starting point to the desired point. Both position error with respect to the requested arm trajectory and comparison between curvature factors have been calculated in order to determine the accuracy of the system.</p> <p>Results</p> <p>The proposed method has been tested on real data acquired during the execution of planar goal-oriented arm movements. Main results concern the capability of the system to accurately recreate the movement task by providing a synthetic arm model with the stimulation patterns estimated by the inverse dynamics model. In the simulation of movements with a length of ± 20 cm, the model has shown an unbiased angular error, and a mean (absolute) position error of about 1.5 cm, thus confirming the ability of the system to reliably drive the model to the desired targets. Moreover, the curvature factors of the factual human movements and of the reconstructed ones are similar, thus encouraging future developments of the system in terms of reproducibility of the desired movements.</p> <p>Conclusion</p> <p>A novel FES-assisted rehabilitation system for the upper limb is presented and two parts of it have been designed and tested. The system includes a markerless motion estimation algorithm, and a biologically inspired neural controller that drives a biomechanical arm model and provides the stimulation patterns that, in a future development, could be used to drive a smart Functional Electrical Stimulation system (sFES). The system is envisioned to help in the rehabilitation of post stroke hemiparetic patients, by assisting the movement of the paretic upper limb, once trained with a set of movements performed by the therapist or in virtual reality. Future work will include the application and testing of the stimulation patterns in real conditions.</p

    ISPD gene mutations are a common cause of congenital and limb-girdle muscular dystrophies

    Get PDF
    Dystroglycanopathies are a clinically and genetically diverse group of recessively inherited conditions ranging from the most severe of the congenital muscular dystrophies, Walker-Warburg syndrome, to mild forms of adult-onset limb-girdle muscular dystrophy. Their hallmark is a reduction in the functional glycosylation of α-dystroglycan, which can be detected in muscle biopsies. An important part of this glycosylation is a unique O-mannosylation, essential for the interaction of α-dystroglycan with extracellular matrix proteins such as laminin-α2. Mutations in eight genes coding for proteins in the glycosylation pathway are responsible for ∼50% of dystroglycanopathy cases. Despite multiple efforts using traditional positional cloning, the causative genes for unsolved dystroglycanopathy cases have escaped discovery for several years. In a recent collaborative study, we discovered that loss-of-function recessive mutations in a novel gene, called isoprenoid synthase domain containing (ISPD), are a relatively common cause of Walker-Warburg syndrome. In this article, we report the involvement of the ISPD gene in milder dystroglycanopathy phenotypes ranging from congenital muscular dystrophy to limb-girdle muscular dystrophy and identified allelic ISPD variants in nine cases belonging to seven families. In two ambulant cases, there was evidence of structural brain involvement, whereas in seven, the clinical manifestation was restricted to a dystrophic skeletal muscle phenotype. Although the function of ISPD in mammals is not yet known, mutations in this gene clearly lead to a reduction in the functional glycosylation of α-dystroglycan, which not only causes the severe Walker-Warburg syndrome but is also a common cause of the milder forms of dystroglycanopathy

    Transgenic Overexpression of LARGE Induces α-Dystroglycan Hyperglycosylation in Skeletal and Cardiac Muscle

    Get PDF
    BACKGROUND: LARGE is one of seven putative or demonstrated glycosyltransferase enzymes defective in a common group of muscular dystrophies with reduced glycosylation of α-dystroglycan. Overexpression of LARGE induces hyperglycosylation of α-dystroglycan in both wild type and in cells from dystroglycanopathy patients, irrespective of their primary gene defect, restoring functional glycosylation. Viral delivery of LARGE to skeletal muscle in animal models of dystroglycanopathy has identical effects in vivo, suggesting that the restoration of functional glycosylation could have therapeutic applications in these disorders. Pharmacological strategies to upregulate Large expression are also being explored. METHODOLOGY/PRINCIPAL FINDINGS: In order to asses the safety and efficacy of long term LARGE over-expression in vivo, we have generated four mouse lines expressing a human LARGE transgene. On observation, LARGE transgenic mice were indistinguishable from the wild type littermates. Tissue analysis from young mice of all four lines showed a variable pattern of transgene expression: highest in skeletal and cardiac muscles, and lower in brain, kidney and liver. Transgene expression in striated muscles correlated with α-dystroglycan hyperglycosylation, as determined by immunoreactivity to antibody IIH6 and increased laminin binding on an overlay assay. Other components of the dystroglycan complex and extracellular matrix ligands were normally expressed, and general muscle histology was indistinguishable from wild type controls. Further detailed muscle physiological analysis demonstrated a loss of force in response to eccentric exercise in the older, but not in the younger mice, suggesting this deficit developed over time. However this remained a subclinical feature as no pathology was observed in older mice in any muscles including the diaphragm, which is sensitive to mechanical load-induced damage. CONCLUSIONS/SIGNIFICANCE: This work shows that potential therapies in the dystroglycanopathies based on LARGE upregulation and α-dystroglycan hyperglycosylation in muscle should be safe

    Identification of 12 new susceptibility loci for different histotypes of epithelial ovarian cancer.

    Get PDF
    To identify common alleles associated with different histotypes of epithelial ovarian cancer (EOC), we pooled data from multiple genome-wide genotyping projects totaling 25,509 EOC cases and 40,941 controls. We identified nine new susceptibility loci for different EOC histotypes: six for serous EOC histotypes (3q28, 4q32.3, 8q21.11, 10q24.33, 18q11.2 and 22q12.1), two for mucinous EOC (3q22.3 and 9q31.1) and one for endometrioid EOC (5q12.3). We then performed meta-analysis on the results for high-grade serous ovarian cancer with the results from analysis of 31,448 BRCA1 and BRCA2 mutation carriers, including 3,887 mutation carriers with EOC. This identified three additional susceptibility loci at 2q13, 8q24.1 and 12q24.31. Integrated analyses of genes and regulatory biofeatures at each locus predicted candidate susceptibility genes, including OBFC1, a new candidate susceptibility gene for low-grade and borderline serous EOC

    A history of invasion: COI phylogeny of Manila clam Ruditapes philippinarum in Europe

    Get PDF
    The Manila clam Ruditapes philippinarum – synonym Venerupis philippinarum (Adams and Reeve, 1850) is now one of the top 5 most commercially valuable bivalve species worldwide. Originally from the Indo-Pacific region, it has been introduced in many countries for fisheries and aquaculture, including estuarine environments along Atlantic and Mediterranean European coasts. Yet despite its commercial value and widespread distribution, the precise origins of stocks remain speculative and the genetic diversity of introduced populations is poorly known. Thus, the aim of this work was to collect mtDNA COI (Cytochrome oxidase I) gene sequences from 5 European countries with Manila clam stocks and compare them with native Asian populations to evaluate their genetic diversity and identify possible routes of invasion. The COI gene sequencing supported a strong founder effect in the European populations with 3 main haplotypes occurring at high frequencies, derived from Japan. However, high haplotype diversity was also observed due to the occurrence of 10 rare haplotypes. This supports hypotheses (i) there have been additional, previous unrecorded, introductions as previously hypothesized by analysis of 16S rDNA, and (ii) there has been a limited loss of genetic diversity in introduced populations, as previously suggested by microsatellite data. This is the first genetic comparison of Manila clam populations introduced in to Europe with native clams. Genetic data herein presented are fundamentally important for the traceability of clam products and stock management programmes and will also inform discussion on the potential resilience of exploited Manila clam populations

    Fine-Scale Mapping at 9p22.2 Identifies Candidate Causal Variants That Modify Ovarian Cancer Risk in BRCA1 and BRCA2 Mutation Carriers

    Get PDF
    Peer reviewe

    Identification of Novel Genetic Loci Associated with Thyroid Peroxidase Antibodies and Clinical Thyroid Disease

    Get PDF
    Peer reviewe
    corecore