5,013 research outputs found

    Sperm death and dumping in Drosophila

    Get PDF
    Mating with more than one male is the norm for females of many species. In addition to generating competition between the ejaculates of different males, multiple mating may allow females to bias sperm use. In Drosophila melanogaster, the last male to inseminate a female sires approximately 80% of subsequent progeny. Both sperm displacement, where resident sperm are removed from storage by the incoming ejaculate of the copulating male, and sperm incapacitation, where incoming seminal fluids supposedly interfere with resident sperm, have been implicated in this pattern of sperm use. But the idea of incapacitation is problematic because there are no known mechanisms by which an individual could damage rival sperm and not their own. Females also influence the process of sperm use, but exactly how is unclear. Here we show that seminal fluids do not kill rival sperm and that any 'incapacitation' is probably due to sperm ageing during sperm storage. We also show that females release stored sperm from the reproductive tract (sperm dumping) after copulation with a second male and that this requires neither incoming sperm nor seminal fluids. Instead, males may cause stored sperm to be dumped or females may differentially eject sperm from the previous mating

    Nanostructured luminescently labeled nucleic acids

    Get PDF
    Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron); (ii) the labeling of bulk nucleic acids (e.g. single‐stranded DNA, double‐stranded DNA) with nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver nanoclusters). This review surveys recent advances in these three different approaches to the generation of nanostructured luminescently labeled nucleic acids, and includes both direct and indirect labeling methods

    Positron kinetics in an idealized PET environment

    Get PDF
    The kinetic theory of non-relativistic positrons in an idealized positron emission tomography PET environment is developed by solving the Boltzmann equation, allowing for coherent and incoherent elastic, inelastic, ionizing and annihilating collisions through positronium formation. An analytic expression is obtained for the positronium formation rate, as a function of distance from a spherical source, in terms of the solutions of the general kinetic eigenvalue problem. Numerical estimates of the positron range - a fundamental limitation on the accuracy of PET, are given for positrons in a model of liquid water, a surrogate for human tissue. Comparisons are made with the 'gas-phase' assumption used in current models in which coherent scattering is suppressed. Our results show that this assumption leads to an error of the order of a factor of approximately 2, emphasizing the need to accurately account for the structure of the medium in PET simulations

    Hydrodynamics and particle motion in upward flowing dense particle suspensions: application in solar receivers

    Get PDF
    Dense gas–solid suspensions have the potential to be applied as heat transfer fluids (HTF) for energy collection and storage in concentrated solar power plants. At the heart of these systems is the solar receiver, composed of a bundle of tubes which contain the solid suspension used as the thermal energy carrier. In the design investigated here, the particles form a dense upward-flowing suspension. Both density of the suspension of these particles and their movement have a strong influence on the heat transfer. An apparatus was designed to replicate the hydrodynamic and particle motion in the real solar energy plant at ambient temperature. The governing parameters of the flow were established as the solid feeding flow rate, the fluidisation velocity, the solids holdup, the freeboard pressure and the secondary air injection (aeration) velocity. In the case studied, aeration was applied with air introduced into the uplift transport tube some way up its length. This study finds that the amount of this secondary air injection is the most important parameter for the stability and the uniform distribution of the solids flow in the tubes. Solids motion was measured using the non-invasive positron emission particle tracking (PEPT) technique to follow the movement of a 60 µm tracer particle, onto which was adsorbed the positron emitting 18F radioisotope. Analysis of the resulting three-dimensional trajectories provides information on solids flow pattern and solids velocity. Results show the overall behaviour of the bulk material in detail: small step-wise movements associated with bubble motion superimposed on a general trend of upward flow in the centre and downward flow close to the walls. These findings suggest that this particular type of flow is ideal for transporting energy from the walls of the solar receiver tubes

    Development of novel adenoviral vectors to overcome challenges observed with HAdV-5 based constructs

    Get PDF
    Recombinant vectors based on human adenovirus serotype 5 (HAdV-5) have been extensively studied in pre-clinical models and clinical trials over the last two decades. However, the thorough understanding of the HAdV-5 interaction with human subjects has uncovered major concerns about its product applicability. High vector-associated toxicity and widespread pre-existing immunity have been shown to significantly impede the effectiveness of HAdV-5 mediated gene transfer. It is therefore that the in depth knowledge attained working on HAdV-5 is currently being used to develop alternative vectors. Here, we provide a comprehensive overview of data obtained in recent years disqualifying the HAdV-5 vector for systemic gene delivery as well as novel strategies being pursued to overcome the limitations observed with particular emphasis on the ongoing vectorization efforts to obtain vectors based on alternative serotypes

    Metapopulation structure for perpetuation of Francisella tularensis tularensis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Outbreaks of Type A tularemia due to <it>Francisella tularensis tularensis </it>are typically sporadic and unstable, greatly hindering identification of the determinants of perpetuation and human risk. Martha's Vineyard, Massachusetts has experienced an outbreak of Type A tularemia which has persisted for 9 years. This unique situation has allowed us to conduct long-term eco-epidemiologic studies there. Our hypothesis is that the agent of Type A tularemia is perpetuated as a metapopulation, with many small isolated natural foci of transmission. During times of increased transmission, the foci would merge and a larger scale epizootic would occur, with greater likelihood that humans become exposed.</p> <p>Methods</p> <p>We sampled questing dog ticks from two natural foci on the island and tested them for tularemia DNA. We determined whether the force of transmission differed between the two foci. In addition, we examined the population structure of <it>F. tularensis </it>from ticks by variable number tandem repeat (VNTR) analysis, which allowed estimates of diversity, linkage disequilibrium, and eBURST analysis.</p> <p>Results</p> <p>The prevalence of tularemia DNA in ticks from our two field sites was markedly different: one site was stable over the course of the study yielding as many as 5.6% positive ticks. In contrast, infected ticks from the comparison site markedly increased in prevalence, from 0.4% in 2003 to 3.9% in 2006. Using 4 VNTR loci, we documented 75 different haplotypes (diversity = 0.91). eBURST analysis indicates that the stable site was essentially clonal, but the comparison site contained multiple unrelated lineages. The general bacterial population is evolving clonally (multilocus disequilibrium) and the bacteria in the two sites are reproductively isolated.</p> <p>Conclusion</p> <p>Even within an isolated island, tularemia natural foci that are no more than 15 km apart are uniquely segregated. One of our sites has stable transmission and the other is emergent. The population structure at the stable site is that of a clonal complex of circulating bacteria, whereas the emerging focus is likely to be derived from multiple founders. We conclude that the agent of tularemia may perpetuate in small stable natural foci and that new foci emerge as a result of spillover from such stable sites.</p

    Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment

    Get PDF
    The sun blocks cosmic ray particles from outside the solar system, forming a detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ experiment in Tibet. Because the cosmic ray particles are positive charged, the magnetic field between the sun and the earth deflects them from straight trajectories and results in a shift of the shadow from the true location of the sun. Here we show that the shift measures the intensity of the field which is transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure

    Synchronization in complex networks

    Get PDF
    Synchronization processes in populations of locally interacting elements are in the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understand synchronization phenomena in natural systems take now advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also overview the new emergent features coming out from the interplay between the structure and the function of the underlying pattern of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.Comment: Final version published in Physics Reports. More information available at http://synchronets.googlepages.com
    corecore