845 research outputs found

    Rigorous analysis of grazing-angle scattering of electromagnetic waves in periodic gratings

    Get PDF
    Grazing-angle scattering (GAS) is a type of Bragg scattering of waves in slanted non-uniform periodic gratings, when the diffracted order satisfying the Bragg condition propagates at a grazing angle with respect to the boundaries of a slab-like grating. Rigorous analysis of GAS of bulk TE electromagnetic waves is undertaken in holographic gratings by means of the enhanced T-matrix algorithm. A comparison of the rigorous and the previously developed approximate theories of GAS is carried out. A complex pattern of numerous previously unknown resonances is discovered and analysed in detail for gratings with large amplitude, for which the approximate theory fails. These resonances are associated not only with the geometry of GAS, but are also typical for wide transmitting gratings. Their dependence on grating amplitude, angles of incidence and scattering, and grating width is investigated numerically. Physical interpretation of the predicted resonances is linked to the existence and the resonant generation of special new eigenmodes of slanted gratings. Main properties of these modes and their field structure are discussed.Comment: 21 pages, 13 figure

    Non-steady-state extremely asymmetrical scattering of waves in periodic gratings

    Get PDF
    Extremely asymmetrical scattering (EAS) is a highly resonant type of Bragg scattering with a strong resonant increase of the scattered wave amplitude inside and outside the grating. EAS is realized when the scattered wave propagates parallel to the grating boundaries. We present a rigorous algorithm for the analysis of non-steady-state EAS, and investigate the relaxation of the incident and scattered wave amplitudes to their steady-state values. Non-steady-state EAS of bulk TE electromagnetic waves is analyzed in narrow and wide, slanted, holographic gratings. Typical relaxation times are determined and compared with previous rough estimations. Physical explanation of the predicted effects is presented.Comment: 7 pages, 3 figures. This paper is freely available online at http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-6-268 which includes multimedia files not included in this preprint versio

    Rigorous analysis of extremely asymmetrical scattering of electromagnetic waves in slanted periodic gratings

    Get PDF
    Extremely asymmetrical scattering (EAS) is a new type of Bragg scattering in thick, slanted, periodic gratings. It is realised when the scattered wave propagates parallel to the front boundary of the grating. Its most important feature is the strong resonant increase in the scattered wave amplitude compared to the amplitude of the incident wave: the smaller the grating amplitude, the larger the amplitude of the scattered wave. In this paper, rigorous numerical analysis of EAS is carried out by means of the enhanced T-matrix algorithm. This includes investigation of harmonic generation inside and outside the grating, unusually strong edge effects, fast oscillations of the incident wave amplitude in the grating, etc. Comparison with the previously developed approximate theory is carried out. In particular, it is demonstrated that the applicability conditions for the two-wave approximation in the case of EAS are noticeably more restrictive than those for the conventional Bragg scattering. At the same time, it is shown that the approximate theory is usually highly accurate in terms of description of EAS in the most interesting cases of scattering with strong resonant increase of the scattered wave amplitude. Physical explanation of the predicted effects is presented.Comment: 14 pages, 7 figures; v2: corrections to metadata and bibliographical info in preprin

    Nanoscale Fabry-Perot Interferometer Using Channel Plasmon-Polaritons in Triangular Metallic Grooves

    Get PDF
    In this letter, we demonstrate the possibility of an effective nano-scale Fabry-Perot interferometer in a sub-wavelength plasmonic waveguide in the form of a triangular groove on a metal surface, guiding channel plasmon-polaritons (CPPs). The resonant cavity is formed by two semitransparent metal membranes (mirrors) placed into the groove. Effective filtering effect of the cavity is demonstrated, resulting in single-mode output from the cavity. Typical quality factor for the cavity of the resonant length is determined to be Q ~ 100 for the silver-vacuum structure with the 30 degree groove angle. Possible ways of increasing this factor are discussed

    Extremely asymmetrical scattering in gratings with varying mean structural parameters

    Get PDF
    Extremely asymmetrical scattering (EAS) is an unusual type of Bragg scattering in slanted periodic gratings with the scattered wave (the +1 diffracted order) propagating parallel to the grating boundaries. Here, a unique and strong sensitivity of EAS to small stepwise variations of mean structural parameters at the grating boundaries is predicted theoretically (by means of approximate and rigorous analyses) for bulk TE electromagnetic waves and slab optical modes of arbitrary polarization in holographic (for bulk waves) and corrugation (for slab modes) gratings. The predicted effects are explained using one of the main physical reasons for EAS--the diffractional divergence of the scattered wave (similar to divergence of a laser beam). The approximate method of analysis is based on this understanding of the role of the divergence of the scattered wave, while the rigorous analysis uses the enhanced T-matrix algorithm. The effect of small and large stepwise variations of the mean permittivity at the grating boundaries is analysed. Two distinctly different and unusual patterns of EAS are predicted in the cases of wide and narrow (compared to a critical width) gratings. Comparison between the approximate and rigorous theories is carried out.Comment: 16 pages, 5 figure

    Extremely asymmetrical scattering of electromagnetic waves in gradually varying periodic arrays

    Get PDF
    This paper analyses theoretically and numerically the effect of varying grating amplitude on the extremely asymmetrical scattering (EAS) of bulk and guided optical modes in non-uniform strip-like periodic Bragg arrays with stepwise and gradual variations in the grating amplitude across the array. A recently developed new approach based on allowance for the diffractional divergence of the scattered wave is used for this analysis. It is demonstrated that gradual variations in magnitude of the grating amplitude may change the pattern of EAS noticeably but not radically. On the other hand, phase variations in the grating may result in a radically new type of Bragg scattering - double-resonant EAS (DEAS). In this case, a combination of two strong simultaneous resonances (one with respect to frequency, and another with respect to the phase variation) is predicted to take place in non-uniform arrays with a step-like phase and gradual magnitude variations of the grating amplitude. The tolerances of EAS and DEAS to small gradual variations in the grating amplitude are determined. The main features of these types of scattering in non-uniform arrays are explained by the diffractional divergence of the scattered wave inside and outside the array.Comment: 13 pages, 10 figure

    Double-resonant extremely asymmetrical scattering of electromagnetic waves in periodic arrays separated by a gap

    Get PDF
    Two strong simultaneous resonances of scattering--double-resonant extremely asymmetrical scattering (DEAS)--are predicted in two parallel, oblique, periodic Bragg arrays separated by a gap, when the scattered wave propagates parallel to the arrays. One of these resonances is with respect to frequency (which is common to all types of Bragg scattering), and another is with respect to phase variation between the arrays. The diffractional divergence of the scattered wave is shown to be the main physical reason for DEAS in the considered structure. Although the arrays are separated, they are shown to interact by means of the diffractional divergence of the scattered wave across the gap from one array into the other. It is also shown that increasing separation between the two arrays results in a broader and weaker resonance with respect to phase shift. The analysis is based on a recently developed new approach allowing for the diffractional divergence of the scattered wave inside and outside the arrays. Physical interpretations of the predicted features of DEAS in separated arrays are also presented. Applicability conditions for the developed theory are derived.Comment: 8 pages, 5 figure

    Anomalous absorption of bulk shear sagittal acoustic waves in a layered structure with viscous fluid

    Get PDF
    It is demonstrated theoretically that the absorptivity of bulk shear sagittal waves by an ultra-thin layer of viscous fluid between two different elastic media has a strong maximum (in some cases as good as 100%) at an optimal layer thickness. This thickness is usually much smaller than the penetration depths and lengths of transverse and longitudinal waves in the fluid. The angular dependencies of the absorptivity are demonstrated to have significant and unusual structure near critical angles of incidence. The effect of non-Newtonian properties and non-uniformities of the fluid layer on the absorptivity is also investigated. In particular, it is shown that the absorption in a thin layer of viscous fluid is much more sensitive to non-zero relaxation time(s) in the fluid layer than the absorption at an isolated solid-fluid interface.Comment: 14 pages, 8 figure

    Grazing-angle scattering of electromagnetic waves in gratings with varying mean parameters: grating eigenmodes

    Get PDF
    A highly unusual pattern of strong multiple resonances for bulk electromagnetic waves is predicted and analysed numerically in thick periodic holographic gratings in a slab with the mean permittivity that is larger than that of the surrounding media. This pattern is shown to exist in the geometry of grazing-angle scattering (GAS), that is when the scattered wave (+1 diffracted order) in the slab propagates almost parallel to the slab (grating) boundaries. The predicted resonances are demonstrated to be unrelated to resonant generation of the conventional guided modes of the slab. Their physical explanation is associated with resonant generation of a completely new type of eigenmodes in a thick slab with a periodic grating. These new slab eigenmodes are generically related to the grating; they do not exist if the grating amplitude is zero. The field structure of these eigenmodes and their dependence on structural and wave parameters is analysed. The results are extended to the case of GAS of guided modes in a slab with a periodic groove array of small corrugation amplitude and small variations in the mean thickness of the slab at the array boundaries.Comment: 16 pages, 6 figure

    Femme au chapeau: Art, Fashion and the Woman's Hat in Belle Epoque Paris

    Get PDF
    This thesis examines the images of hatted women in the early 1900s among Paris-based artists, when the fast pace of the fashion industry and changing media revolutionised the image of a fashionable woman. The first chapter examines the hat in portraiture of the early twentieth century, in both academic and avant-garde art, with emphasis on the depiction of glamour, and how a woman’s identity might be altered by a hat. It draws a comparison between commercial portraiture, and portraits of women by avant-garde artists. The second chapter addresses the images of the popular Montmartre dance hall, the Moulin de la Galette, both in paintings and in print media. The focus is on the “fantasy,” whereby a temporary and alternative identity is created for a woman through her headgear. The final chapter examines the evolution of the hat to its largest and most elaborate state at Parisian horse-racing events, addressing the obsession with size, and the environmental impact of the millinery trade in its pursuit of ever-increasing grandeur
    • …
    corecore