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Abstract
Important and emerging trends at the interface of luminescence, nucleic acids and nanotechnology

are: (i) the conventional luminescence labeling of nucleic acid nanostructures (e.g. DNA tetrahedron);

(ii) the labeling of bulk nucleic acids (e.g. single‐stranded DNA, double‐stranded DNA) with

nanostructured luminescent labels (e.g. copper nanoclusters); and (iii) the labeling of nucleic acid

nanostructures (e.g. origami DNA) with nanostructured luminescent labels (e.g. silver

nanoclusters). This review surveys recent advances in these three different approaches to the

generation of nanostructured luminescently labeled nucleic acids, and includes both direct and

indirect labeling methods.
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1 | INTRODUCTION

Nucleic acids are arguably the singly most important class of molecules

based on their central role in life. Rendering nucleic acids luminescent

via direct or indirect labeling has facilitated the sensitive detection of

this class of molecule. Directly and indirectly, luminescently labeled

DNA and RNA underlie many important clinical assays.

In recent years, nanotechnology has begun to have an impact on

many aspects of the analytical sciences.[1–3] The convergence of

nucleic acid and luminescence research with nanoscale science is an

emerging trend. Luminescent labels such as chemiluminescent

compounds or fluorophores have been used to label nucleic acids for

several decades (Figure 1, overlap A). What has emerged in the past

decade is the manipulation and modification of nucleic acids at the

nanoscale (e.g., DNA tetrahedron) (Figure 1, overlap B). Similarly, labels

and optical properties of labels can be modified and studied at the

nanoscale level (e.g. silver nanoclusters) (Figure 1, overlap C). Finally,

there are emerging applications of combining nanoscale properties of

both nucleic acids and luminescent labels within the same system

(Figure 1, overlap D).

This review surveys recent advances in the luminescent labeling of

nucleic acids in which one or both of the components of the luminescent

label–nucleic acid conjugate is nanosized or nanostructured. The more

conventional luminescence labeling of nucleic acids (e.g. fluorescein
d. wileyonlin
labeling of single‐stranded DNA) is represented by the overlapping

regions A in Figure 1, and this type of labeling has a long history and

has been extensively reviewed previously.[4,5]

Work in these three areas at the intersection of nanotechnology,

nucleic acids and labels has been motivated by the development of

more sensitive labeling techniques, more efficient light absorption

and energy transfer processes, aggregation‐induced emission, ‘turn‐on’

probes and programmed geometries for luminescent labels.
2 | NUCLEIC ACIDS AND NUCLEIC ACID
NANOSTRUCTURES

The building blocks of the well known deoxyribonucleic acid (DNA)

and ribonucleic acid (RNA) molecules are the adenine (A), guanine

(G), cytosine (C) and thymine (T) bases, with the thymine base being

replaced by uracil (U) in RNA. The diversity of the building blocks for

DNA and RNA includes the so‐called ‘rare’ or ‘minor variant’ or ‘modified’

bases that have been characterized (e.g., 5‐hydroxymethyluracil,

5‐dihydroxypentyluracil).[6–8] In vivo, DNA methylation of cytosine

or guanine nucleotides provides two other types of bases

(methylcytosine and methylguanosine). Another level of nucleic acid

diversity has been achieved by replacing natural with modified bases

to create ‘synthetic DNA’ of different types.[9] The current family of
Luminescence 2017; 32: 132–141elibrary.com/journal/bio
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FIGURE 1 Intersecting research domains. Nucleic acid and lumines-
cence research have converged with nanoscale science. Luminescent
labels such as chemiluminescent compounds or fluorophores have been
used to label nucleic acids for several decades (A). What has emerged in
the past decade is the manipulation and modification of nucleic acids at
the nanoscale level (B). Similarly, labels and optical properties of labels
can bemodified and studied at the nanoscale (C). Finally, there are emerging
applications of combining nanoscale properties of nucleic acids and
luminescent labels within the same system (D)
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naturally occurring nucleic acids (DNA and RNA) includes mtDNA,

mRNA, miRNA, siRNA, tRNA, tmRNA, rRNA, snRNA, snoRNA and

gRNA. They possess a diverse range of functions including protein

coding, translation, splicing and gene regulation.

Perhaps, more than any other polymer, nucleic acids display a

considerable range of structural diversity. The iconic double‐stranded

DNA comprising two strands of DNA hydrogen‐bonded by base

pairing (A:T and G:C) is familiar to many, but nucleic acids can adopt
FIGURE 2 Nanostructured DNA origami. (a) Atomic force microscopy (AFM
AFM pictures for the 7 × 8 structures. Scale bars in the insets are 40 nm. [T
from John Wiley and Sons][20]
other structures or be formed into different shapes. These diverse

structures include single‐ and triple‐stranded molecules, single‐ and

double‐stranded circular structures (e.g. mitochondrial DNA) and

branched molecules. Internal hybridization can create hairpin loops in

single‐stranded molecules, and light can covalently link pyrimidine

bases (e.g., thymine and cytosine) and create cross links between

individual strands in the double‐stranded DNA to produce four

member carbon ring (cyclobutane) pyrimidine dimers. G‐quadruplex

secondary structures also can form in single‐stranded DNA and RNA

in vitro. These planar quartets are composed of stacked associations

of Hoogsteen‐bonded guanines.[10]

More sophisticated chemistry can create other shapes and

structures including dendrimers,[11] quadrilateral,[12] cube,[12] truncated

octahedron[12] and square DNA.[13] One approach to building DNA

nanostructures has been to design 32‐mers that act like nanoscopic

Lego®‐like building blocks (‘DNA bricks’). This approach has facilitated

the creation of over 100 different three‐dimensional shapes.[14,15]

Likewise, four oligonucleotides have been designed that spontane-

ously self‐assemble to form a DNA tetrahedron with DNA double

helices as the edges of the tetrahedral structure.[16]

Yet another route to different DNA‐based structures is termed

‘DNA origami’[17,18] and this has led to a Mobius DNA strip, two

interlocking DNA rings,[19] tiles, and a wide range of other shaped

objects (Figure 2).[20,21] tRNA also has been used as a building block

to fabricate an octahedron structure.[22]

DNA nanotechnology is a new field based on artificial nucleic

acid structures for technological uses. Examples include, DNA

machines (e.g. molecular tweezers, nanorobot)[23,24] and DNA

computing.[25,26] A DNA computer described in 1994 achieved a

100 teraflop computing capacity (1014 operations per second); this

was more powerful than the supercomputers available at that

time.[25] The computational power of nucleic acids has evolved over
) images of the 5 × 5 structure. Scale bars in the insets are 20 nm. (b)
he figure has been reproduced from Zhao et al. (2010) with permission
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the past 20 years to include broader experimental use of ‘nucleic

acid‐based logic gates’.[27]

Linking sequence with function and identifying and

deciphering sequence motifs in DNA molecules has been a key

focus for many decades since the original breakthrough in identi-

fying three base sequences (triplet codons) as the instructions for

amino acid sequence in protein synthesis.[28] In the past, DNA

sequence was often divided into DNA with identifiable function

(e.g. genes) and the rest was termed ‘junk DNA’. Increasingly, it

is being recognized that junk DNA is a misnomer and that this

DNA too has function. For example, the human[29] and mouse[30]

Encyclopedia of DNA Elements (ENCODE) projects have

demonstrated that intergenic noncoding DNA contains motifs for

transcriptional regulation.
FIGURE 3 Nanostructured labels. (a) 150 nm gold nanoparticles (4 × 4
micron 3D topography image of 150 nm Au nanoparticles immobilized
on a Au‐plated glass slide. (b) Single layer flakes of graphene oxide
deposited on functionalized mica [2.5 × 2.5 microns atomic force
3 | NANOSTRUCTURED LUMINESCENT
LABELS

There is a wide range of materials used to construct luminescent

nanostructures and considerable diversity in the shapes and properties

of the resulting nanostructures.[31–37] Nanoparticles and nanoclusters

represent one of the principal classes of nanostructures with lumines-

cence properties, but particles with many other shapes have been

fabricated including nanoprisms, nanorods and nanotubes.

The luminescence properties of a nanostructure are controlled by

composition and also by the particle size and shape. Nanostructures

useful as labels have been constructed from metals (gold, silver,

copper)[35] (Figure 3a), semiconductor materials (e.g., CdSe, CdTe,

CdSeTe),[38] silicon[33] and carbon (e.g. graphene, graphene oxide)

(Figure3b).[39] The size and shapeof the structure, e.g., silver nanosphere vs

silver nanoprism and the aspect ratio of a structure,[31] can determine the

luminescence emission wavelength. More complex nanostructured labels

include solid core‐shell structures[38] and hollow spherical particles

containing nanoparticle labels (quantum rattles).[40]
microscopy (AFM) topography image]. (Reproduced with permission
from AIST‐NT, Inc., Novato, California (http://www.aist‐nt.com/)
3.1 | Luminescent nucleic acids

A number of options exist for detecting nucleic acids. A nucleic acid

may have a native luminescence (e.g. fluorescence), but usually this

is too weak to be of routine use for sensitive detection. A nucleic

acid can be rendered luminescent by physical methods such as

intercalation of a fluorescent dye. Alternatively, a nucleic acid can

be rendered luminescent by directly labeling the nucleic acid with

an appropriate molecule that is inherently luminescent (e.g. a

fluorophore) or with a label that can trigger a luminescent reaction

(e.g. an enzyme label). Another strategy is to indirectly label the

nucleic acid with a secondary label (e.g. biotin). The secondary label

itself does not produce a signal, but it can be linked via an

appropriate binder (e.g. streptavidin) to a luminescence reaction,

by labeling the binder with a luminescent label or a label that can

trigger a luminescence reaction. The following sections provide

examples of these types of labeling strategies in the context of

nanostructured labels and nanostructured nucleic acids.
3.2 | Photoluminescent nucleic acids

The diversity of photoluminescent (fluorescence, phosphorescence)

labeling techniques for single‐stranded and double‐stranded nucleic

acids has been reviewed previously.[4,5] However, in recent years a

significant body of literature on nanostructured photoluminescent

labels for nucleic acids and photoluminescent labeled nucleic acid

nanostructures has appeared, and this new direction in luminescent

labeling of nucleic acids is reviewed in the following section.
3.3 | Nucleic acid nanostructures labeled with
conventional labels

Switch‐on (turn‐on) and switch‐off (turn‐off) assays based on fluores-

cent G‐quadruplex nanostructures are an active area of research. The

scope of assays based on the modulation of the fluorescence of

http://www.aist-nt.com
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G‐quadruplex complexes includes assays for DNA, metal ions,

enzymes, and biothiols.[41–49]

An example of the scheme for a switch‐on T4 polynucleotide

kinase activity assay is shown in Figure 4. Successive action of the

T4 polynucleotide kinase and an exonuclease on a hairpin oligonucleo-

tide results in potassium ion‐mediated formation of a G‐quadruplex

structure from the digested hairpin. The G‐quadruplex is rendered

fluorescent (i.e. switched on) by binding to an iridium (III) complex.[41]

Switch‐on assays have also been designed utilizing covalently

labeledG‐quadruplex structures that are formed by folding of a thrombin

aptamer oligonucleotide labeled at the 5′‐end with FAM and at the 3′‐

end with TAMRA.[45] As shown in Figure 5, potassium ion‐induced for-

mation of the G‐quadruplex structure facilitates fluorescence resonance

energy transfer (FRET) due to the proximity of the terminal donor and

acceptor fluorescent dyes, and the fluorescence signal was switched on.

Switch‐off assay designs are also possible as illustrated by an assay

for hepatitis viral DNA using tetrakis(dicyclohexylguanidino)‐zinc‐

phthalocyanine (Zn‐DIGP) as a G‐quadruplex label. Binding of target

DNA reduced the fluorescence from the Zn‐DIGP label complexed to

the G‐quadruplex structure.[46]

Fluorescent DNA tetrahedron nanostructures also have been pre-

pared. For example, a DNA tetrahedron nanostructure was assembled

with SYBR green I[50] or YOYO‐1[51] inserted into the structure to form

fluorescent DNA. Covalent attachment of an acceptor dye, such as

Cy3 facilitates energy transfer from the intercalated dyes (YOYO‐1)

and provides a route to multicolor fluorescence labeling.[51]

DNA origami nanostructures have been employed as a scaffold

that allows the placement of a defined number of fluorophores at

defined locations to produce so‐called ‘nanorulers’. These fluorescent

DNA origami nanorulers can have arrangements of fluorescent marks

of different color ranging from 6 nm to 400 nm. The range of origami

DNA structures includes six and 12 helix bundles, rectangles and

nanopillars.[52]
FIGURE 4 G‐quadruplex‐based luminescence
assay for the detection of T4 polynucleotide
kinase (PNK) activity. A hairpin oligonucleotide
with a 3′‐G‐quadruplex sequence (green) has a
complementary sequence (blue) and a linker
hairpin (red). T4 PNK phosphorylates the 5′
nucleotide (PO4) allowing efficient degrada-
tion of the complementary sequence (blue)
by lambda (λ) exonuclease (yellow cartoon
character). Lambda exonuclease does not
degrade single‐stranded DNA, so the
remaining linker (red) and G‐quadruplex
sequences are intact; the resulting molecule
folds into the G‐quadruplex structure in the
presence of potassium ions (K+). Interaction
between the Ir(III) complex 1 [Ir(ptpy)2(dpp)
where ptpy = 2‐(p‐tolyl)pyridine; dpp = 2,9‐
diphenyl‐1,10‐phenanthroline)] and the G‐
quadruplex results in enhanced luminescence.
[The figure has been reproduced from He
et al. (2014) with the permission of the Royal
Society of Chemistry (http://dx.doi.org/
10.1039/c3cc47444e)[41].]
3.4 | Nucleic acids labeled with nanostructured
labels

Nanotechnology also has played a part in photoluminescent labeling of

nucleic acids. Double‐stranded DNA can be metalized with copper

nanoparticles (nanoclusters) by reducing bound copper ions with

ascorbate in the presence of DNA. The DNA‐Cu nanoparticle com-

plexes fluoresce at around ~600 nm. The size of the nanoparticles

and the fluorescence intensity is dependent on the number of base

pairs in the double‐stranded DNA.[53] This labeling technique can be

used to distinguish SNPs based on the influence of base type on the

nanoparticle formation,[54] and also used to assess kinase activity.[55]

In recent years, silver nanoclusters have found use as fluorescent

labels for DNA with advantages of good photostability, high quantum

yield and ease of synthesis.[56–58] Silver ions bind to DNA and they

can then be reduced to metallic silver by treatment with sodium boro-

hydride to produce silver nanoclusters. Early work investigated the for-

mation of silver nanoclusters with a short oligonucleotide (12‐mer)

(1–4 Ag/oligonucleotide; fluorescence peak at 642 nm with 580 nm

excitation).[56] Subsequently, studies with a dC12 oligonucleotide

showed up to seven bound silver atoms in the red‐emitting product.[59]

A DNA microarray has been used to screen 12‐mers comprised of A, T

and C bases; G was not part of the sequence because of the propensity

of this base for self‐binding. This led to the identification of blue,

green, yellow, red and near infra‐red fluorescent 12‐mer silver

nanoclusters.[60] Polycytosine loops have been incorporated in some

probes as templates for formation of silver nanoclusters.[61]

Detection of microRNA has been accomplished based on a red‐

emitting 12‐mer silver nanocluster as a label. When the DNA sequence

complementary to miR160 microRNA, previously covalently linked to

the 12‐mer, was treated with silver nitrate and sodium borohydride it

produced silver nanoclusters on the 12‐mer and to a lesser extent on

the DNA probe. The fluorescence of this silver nanocluster–12‐mer

http://dx.doi.org/10.1039/c3cc47444e
http://dx.doi.org/10.1039/c3cc47444e


FIGURE 5 G‐quadruplex FRET assay for the detection of potassium ions (K+). A FRET probe with FAM (F) and TAMRA (T) fluorescent dyes form a
G‐quadruplex in the presence of K+ (a). The formation of the G‐quadruplex results in energy transfer from the FAM (fluorescein) donor to the
TAMRA (tetramethylrhodamine) acceptor and results in longer wavelength emission. Calcium (Ca2+) and magnesium (Mg2+) may cause assay inter-

ference and are therefore chelated from the serum sample (b). [The figure has been reproduced from Zhang et al. (2016) with the permission of the
Royal Society of Chemistry (http://dx.doi.org/10.1039/c6ra04046b)[45].]
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DNA probe diminished significantly when bound to the complemen-

tary RNA in miR160 (Scheme 1).[62]

One type of fluorescent silver nanocluster DNA probe has been

termed a ‘chameleon NanoCluster Beacon’.[63] Binding of the labeled

G‐rich probes at locations adjacent to a SNP in the wild‐type and

mutant targets resulted in different coloured emissions from the

labeled probe (a 60–70 nm shift in emission wavelength). The silver

nanocluster DNA probe itself did not produce a signal unless bound

to the target.

Indirect labeling with silver nanoclusters also is viable, as exempli-

fied by a fluorescent avidin–24‐mer cytosine‐silver nanocluster (emis-

sion at 634 nm, fluorescence lifetime 2.86 ns) used for cell‐surface

labeling.[64]

A nanoflare comprises a gold nanoparticle (e.g. 13 nm diameter)

densely coated with capture probe to which is hybridized a displace-

able Cy5‐labeled reporter probe.[65,66] In this so‐called ‘spherical

nucleic acid’, the fluorescence signal of the Cy5 dye is quenched by

the gold nanoparticle. Displacement of the reporter probes by target

nucleic acid abolishes the quenching and a bright ‘flare’ of fluorescence

is generated (Scheme 2).

Carbon nanotubes can quench fluorescence and this property has

been exploited in a non‐separation type of assay for DNA (Scheme 3).

The fluorescence signal from a fluorescent hairpin DNA probe is

quenched on binding to a single‐walled carbon nanotube. Competitive
SCHEME 1
binding of the labeled probe with target DNA and the nanotube leads

to a fluorescence signal that is directly proportional to the concentra-

tion of target DNA present. In this context the carbon nanotube acts

both as a quencher label, and as a nanoscaffold for the DNA probe.[67]

Other carbon nanostructures are useful as labels for nucleic acids,

notably carbon dots (C‐dots or carbonic nanodots). These are carbon‐

containing nanoparticles that can quench fluorescence or they can be

made fluorescent by modification with various coating materials (e.g.

polyethylene glycol) or dopants (e.g. ZnO or ZnS).[39,68] Graphene

quantum dots are yet another type of carbon‐based nanoparticle that

can be engineered to emit light from the blue‐green to the orange–

red region depending on size and structure.[69,70]

The quenching property of a carbon nanoparticles and water solu-

ble graphene oxide (one atom thick carbon sheets) have been exploited

in an assay in which a fluorescent probe and target are hybridized and

then graphene oxide added to the mixture. Any unbound fluorophore

labeled probe is adsorbed to the surface of the nanoparticle and the

fluorescence is quenched. An alternative strategy first binds the fluo-

rescent probe to the graphene oxide and then exposes the immobilized

probe to target, which hybridizes and releases the probe from the

graphene oxide and restores fluorescence signal. In both assay strate-

gies, the observed fluorescence is directly proportional to the concen-

tration of the target DNA (detection limit 100 pM for a DNA

oligonucleotide).[39,71,72] An alternative energy transfer strategy

http://dx.doi.org/10.1039/c6ra04046b
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exploits the fluorescence properties of graphene oxide (emission max-

imum 546 nm). A DNA probe was covalently immobilized on graphene

oxide (one atom thick sheets, lateral dimensions 500 nm to 1 μm)

arrayed as spots on a glass slide. Binding of gold nanoparticle‐labeled

target led to quenching of the fluorescence signal from the graphene

oxide spot (Scheme 4).[73]

Quantum dots have been investigated extensively as fluorescent

labels for nucleic acids. The scope of quantum dot labels includes

quantum dots functionalized with a platinum chelate to affect fluores-

cent labeling via guanine residues[74], and green or red fluorescent lipo-

some‐CdSe quantum dot complexes as labels for oligonucleotides.[75]

Mn‐doped ZnS quantum dots are phosphorescent, and this emis-

sion is quenched when a Mn‐doped ZnS quantum dot‐labeled DNA

probe is bound to a carbon nanotube. Hybridization with target

releases the probe from the nanotube surface and the phosphores-

cence of the label is restored.[76]

Another type of assay strategy involves modulation of a lumines-

cent signal when a nucleic acid binds to a luminescent nanostructure.

For example, nanoparticle composites comprising an organic dye

(Morin) and SiO2 nanoparticles (50 nm diameter) exhibit room temper-

ature phosphorescence when bound to a polyamide membrane. Bind-

ing of DNA enhances the phosphorescence emission and this forms

the basis of detecting DNA (limit of detection 1.5 pg/mL).[77] Likewise,

nanohybrids formed by interaction of polyhedral oligomeric octa(3‐

aminopropyl)octasilsequioxane and Mn‐doped ZnS nanoparticles can

act as sensors for DNA. Binding of DNA quenches the room tempera-

ture phosphorescence of the complexes.[78]
SCHEME 4
Up‐converting phosphor nanoparticles are a type of nanoparticle

that convert long wave incident excitation light into shorter wave-

length emissions (anti‐Stokes emission). Up‐converting green‐emitting

Y2O2S:Yb,Er phosphor nanoparticles (400 nm diameter) have been

used to detect DNA on microarrays,[79] and up‐converting ytter-

bium–erbium nanoparticles have been used as labels in lateral‐flow

assays to screen for the presence of human papillomavirus type

16.[80] Another up‐converting phosphor used for DNA detection is

the nanoparticulate Yb3+ /Er3+ ion‐pair doped hexagonal phase

NaYF4.
[81]
3.5 | Nucleic acid nanostructures labeled with
nanostructured labels

A DNA nanowire labeled with a silver nanocluster provides an example

of a nanostructured label for a DNA nanostructure.[82] Micrometre‐

long red‐ or yellow‐emitting silver nanocluster – DNA nanowires,

containing C‐rich hairpin templates for silver nanocluster formation

were synthesized by either a hybridization‐polymerization process or

a hybridization chain reaction. Another example is provided by rectan-

gular DNA origami‐containing biotinylated strands that were rendered

fluorescent via binding to a streptavidin‐coated CdSe–ZnS core‐shell

QDs.[83] Also, guanine‐rich DNA in the form of a G‐quadruplex also

can be labeled with silver nanoclusters, and this type of probe has

found application in bioimaging.[84] Finally, double labeling is possible

as exemplified by the labeling of a rectangular DNA origami template

with single‐stranded DNA‐coated gold nanoparticles on one side and
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with quantum dots on the opposite side of the origami structure

(Figure 6).[85]
4 | CHEMILUMINESCENT NUCLEIC ACIDS

Chemiluminescence has become an established detection technology for

nucleic acids based on direct chemiluminescent labels (e.g. acridinium

ester), or chemiluminescent detection of enzyme labels, such as alkaline

phosphatase using chemiluminescent 1,2‐dioxetane substrates.[4]

The nanostructured labels for nucleic acids described to date are

mostly indirect labels that are detected via catalysis of a chemilumines-

cent reaction, as described below.

4.1 | Nucleic acid nanostructures labeled with
conventional labels

A biotinylated DNA probe photochemically cross‐linked to a nylon 6:6

nanotube–nanorod mixture provides an example of a composite

nucleic acid nanostructure.[86] This structure was rendered chemilumi-

nescent via binding to streptavidin–alkaline phosphatase and subse-

quent detection of the alkaline phosphatase label using a

chemiluminescent dioxetane substrate.

4.2 | Nucleic acids labeled with nanostructured
labels

Nanoparticle labels represent the most extensively investigated type

of nanostructured label for chemiluminescent detection of nucleic

acids.[87] Gold nanoparticle‐labeled DNA probes can be detected via

their catalytic activity on the chemiluminescent luminol reaction. Stud-

ies have shown that irregularly shaped Au nanoparticle labels are more

effective catalysts than spherical nanoparticle labels.[88]

Silver,[89] magnetic iron[90] and Co nanoparticles[91] also are used

as labels for DNA probes. Prior to detection, the NP label is treated

with nitric acid to release Ag+, Fe3+ and Co2+, metal ions, respectively.

The released metal ions are then detected via their catalytic activity in

the chemiluminescent luminol reaction.

Fluorescent carbon nanodots in the presence of oxidants (e.g.,

KMnO4) produce a chemiluminescent emission (peaks at 500 and

650 nm).[92] This type of nanoparticle has been used as a label in com-

bination with nanoporous gold as an amplifier in a low‐cost paper‐

based assay for DNA with a detection limit of 8.56 10–19 M.[93]
5 | ELECTROCHEMILUMINESCENT
NUCLEIC ACIDS

Electrochemiluminescence‐active substances include transition metal

complexes (e.g., tris‐bipyridyl ruthenium (TBR) chelates), various

organic molecules (e.g., luminol) and nanomaterials (e.g., quantum

dots). Both TBR‐nanoparticle composites and quantum dot label have

found use for electrochemiluminescent labeling of nucleic acids.
5.1 | Nucleic acids labeled with nanostructured
labels

TBR labels also have been used in combination with gold nanoparticles

in a biobarcode‐based assay scheme (detection limit 100 fM).[94] A

mixture of a 27‐mer oligonucleotide probe and cysteamine

biobarcodes were attached to gold nanoparticles and then TBR labels

were covalently attached to the free amino group of cysteamine to

form the biobarcode reagent.

The electrochemiluminescent properties of a TBR label can be

modulated by the proximity of a quencher such as ferrocene. A molec-

ular beacon‐type oligonucleotide probe was synthesized to have a fer-

rocene label at one end and the other end was bound to a gold

nanoparticle‐TBR composite. The close proximity of the labels leads

to quenching of the TBR electrochemiluminescence by the ferrocene

label. Binding of target to the labeled probe opens the hairpin and

the electrochemiluminescent property of the TBR label is restored.[95]

Other electrochemiluminescent labels include different types of

quantum dots (e.g., CdS, CdTe)[96] and metal nanoparticle composites

[e.g. PdCu@carbon,[97] luminol‐Pt,[98] CaCO3–carboxymethyl

chitosan microspheres@Ag nanoparticles,[99] CdS QD‐dendrimer

nanocomposites[100]]. Quantum dot labeling also can be achieved

via an indirect labeling strategy involving biotinylated DNA and avi-

din‐modified quantum dots.[101]
5.2 | Clinical in vitro nanostructured luminescent
assays

There are many examples of clinical laboratory assays that incorporate

aspects of nanotechnology[102–104] but there are no commercialized

assays which specifically utilize nanostructured luminescently labeled

nucleic acids such as those described in this survey.
FIGURE 6 Nucleic acid nanostructures
labeled with nanostructured labels. (a) Atomic
force microscopy (AFM) image of the assem-
bly of streptavidin‐coated CdSe quantum dots
(core diameter ~5 nm) and single‐stranded
DNA‐coated gold nanoparticles (10 nm diame-
ter) on opposite sides of a rectangular DNA
origami template (scale bar is 200 nm). (b)
Cross‐section profile analysis showing the
height difference between the streptavidin‐
coated quantum dots and the single‐stranded
DNA‐coated gold nanoparticles. [This figure
has been reproduced from Wang et al 2012
with permission from John Wiley and Sons.][85]
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Traditional nucleic acid testing is the bulk combination of nucleic

acids and luminescent labels that include intercalating dyes (ethidium

bromide, SYBR green) and conjugated fluorescent molecules (e.g. fluo-

rescein). These traditional assay formats are used in agarose gel electro-

phoresis, capillary electrophoresis, real‐time PCR, Sanger sequencing

and massively parallel, next generation sequencing.[4] Although the

principles of these assays rely on intermolecular interactions, the com-

bination of assays components occur at the macroscale without

designed/engineered features for either the label of the nucleic acid

at the nanoscale.

In recent years, there has been an emergence of nanolabels. A

good example is the use of colloidal gold in immunoassays and in

nucleic acid assays in which the gold nanosized‐gold particles are

detected via light scattering (e.g. the Verigene system).[105] Assay for-

mats using unique nucleic acid nanostructures with inherent lumines-

cent properties or nucleic acid nanostructures conjugated to

luminescent molecules have not yet been commercialized. Although

manipulating nucleic acids at the nanoscale yields fascinating struc-

tures with unique biophysical properties, the rate of adoption and

commercialization into clinical testing will be governed by innovation

that provides compelling advantages over existing technologies. Con-

tinued unmet needs for clinical diagnostic assays include ultra–high

sensitivity analyte detection (i.e. single‐molecule detection), decreased

interference or cross‐reactivity with other biological molecules, and

minimally invasive or non‐invasive analyte detection. Perhaps, lumi-

nescent nucleic acid nanostructures will provide advantages in these

areas of need within the clinical laboratory. Finally, such tests must

be cost effective, sensitive and require minimal effort and time to per-

form and analyze.
6 | CONCLUSION

Nanotechnology is providing new types of nanostructured lumines-

cent labels and assay strategies for detecting nucleic acids. Most are

at an early stage of development, but the beneficial properties of

nanolabels, such as stability, brightness and biocompatibility are fuel-

ing continued research and development. It remains to be seen if nano-

structured labels will displace conventional luminescent nucleic acid

labels. Likewise, the role of nucleic acid nanostructures in analysis is

unclear. This is also a highly active area of research that includes appli-

cations in photonics and therapeutics[106], and developments in these

areas may well spark future applications for nucleic acid nanostruc-

tures in routine clinical diagnostics.
ABBREVIATIONS USED

A adenine

AFM atomic force microscopy

C cytosine

G guanine

gRNA guide RNA

mRNA messenger RNA

miRNA micro RNA

mtDNA mitochondrial DNA
rRNA ribosomal RNA

siRNA small interfering RNA

SNP single‐nucleotide polymorphism

snRNA small nuclear RNA

snoRNA small nucleolar RNA

T thymine

TBR tris‐bipyridyl ruthenium

tRNA transfer RNA

tmRNA transfer‐messenger RNA
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