12 research outputs found

    Measurement of the multi-TeV neutrino cross section with IceCube using Earth absorption

    Get PDF
    Neutrinos interact only very weakly, so they are extremely penetrating. However, the theoretical neutrino-nucleon interaction cross section rises with energy such that, at energies above 40 TeV, neutrinos are expected to be absorbed as they pass through the Earth. Experimentally, the cross section has been measured only at the relatively low energies (below 400 GeV) available at neutrino beams from accelerators \cite{Agashe:2014kda, Formaggio:2013kya}. Here we report the first measurement of neutrino absorption in the Earth, using a sample of 10,784 energetic upward-going neutrino-induced muons observed with the IceCube Neutrino Observatory. The flux of high-energy neutrinos transiting long paths through the Earth is attenuated compared to a reference sample that follows shorter trajectories through the Earth. Using a fit to the two-dimensional distribution of muon energy and zenith angle, we determine the cross section for neutrino energies between 6.3 TeV and 980 TeV, more than an order of magnitude higher in energy than previous measurements. The measured cross section is 1.300.19+0.211.30^{+0.21}_{-0.19} (stat.) 0.43+0.39^{+0.39}_{-0.43} (syst.) times the prediction of the Standard Model \cite{CooperSarkar:2011pa}, consistent with the expectation for charged and neutral current interactions. We do not observe a dramatic increase in the cross section, expected in some speculative models, including those invoking new compact dimensions \cite{AlvarezMuniz:2002ga} or the production of leptoquarks \cite{Romero:2009vu}.Comment: Preprint version of Nature paper 10.1038/nature2445

    RASSF1A inhibits PDGFB-driven malignant phenotypes of nasopharyngeal carcinoma cells in a YAP1-dependent manner.

    Get PDF
    Nasopharyngeal carcinoma (NPC) is a highly aggressive tumor characterized by distant metastasis. Deletion or down-regulation of the tumor suppressor protein ras-association domain family protein1 isoform A (RASSF1A) has been confirmed to be a key event in NPC progression; however, little is known about the effects or underlying mechanism of RASSF1A on the malignant phenotype. In the present study, we observed that RASSF1A expression inhibited the malignant phenotypes of NPC cells. Stable silencing of RASSF1A in NPC cell lines induced self-renewal properties and tumorigenicity in vivo/in vitro and the acquisition of an invasive phenotype in vitro. Mechanistically, RASSF1A inactivated Yes-associated Protein 1 (YAP1), a transcriptional coactivator, through actin remodeling, which further contributed to Platelet Derived Growth Factor Subunit B (PDGFB) transcription inhibition. Treatment with ectopic PDGFB partially increased the malignancy of NPC cells with transient knockdown of YAP1. Collectively, these findings suggest that RASSF1A inhibits malignant phenotypes by repressing PDGFB expression in a YAP1-dependent manner. PDGFB may serve as a potential interest of therapeutic regulators in patients with metastatic NPC

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta

    Новые данные радиоуглеродного и ботанического анализов находок из раскопок 1903 г. на восточном участке Оглахтинского могильника

    No full text
    The early Tashtyk cemetery site of Oglakhty in Minusinsk basin is best known because of the exceptional state of preservation of some of the organic objects found there in excavations in 1903 and 1969. The chronological and spatial development of this extensive cemetery have not been clearly explored until now. This paper represents a first step in that direction by dealing with previously unpublished finds from Adrianov’s excavation at the site in 1903 and held in Krasnoyarsk Museum of Local Lore. They were found in the Eastern plot of the cemetery (Oglakhty I) which represents one of four such plots according to the latest fieldwork results from the site. This paper presents the results of a new series of calibrated radiocarbon dates and new scientific identifications of the woody and plant species used to construct and fit out these graves. The results are considered within the first attempt to examine finds from Oglakhty cemetery within what we now know of its spatial organization. This has only been possible through a combination of these new absolute dates combined with a recent survey of the site and the identification of the previously excavated burials using scattered archival sources. The new series of 15 radiocarbon dates were based mainly on samples of different materials from two graves (1 and 2) containing the best-preserved objects from Adrianov’s excavation. This adds a new footing to understanding the chronology of the site as previous absolute dates were only available for a single grave in the Western plot, and other studies have been forced to rely on typological approaches and comparative analysis with finds from other regions. According to these new results, graves 1 and 2 in the Eastern plot date between the mid-2nd and mid 4th centuries AD, the former slightly later than the latter. The species of all of the finds, whether of wood, birchbark, grass or cereal grain, have been confirmed through scientific analysis. The results provide new glimpses into early Tashtyk exploitation of the local environment, and constitutes the first such step of studying the palaeoenvironment of this region in the Tashtyk period

    Abstracts Of The Proceedings And The Posters From The Third Scientific Session Of The Medical College Of Varna

    No full text
    October 2-3, 201

    Biomaterials to model and measure epithelial cancers.

    No full text
    The use of biomaterials has substantially contributed to both our understanding of tumorigenesis and our ability to identify and capture tumour cells in vitro and in vivo. Natural and synthetic biomaterials can be applied as models to recapitulate key features of the tumour microenvironment in vitro, including architectural, mechanical and biological functions. Engineered biomaterials can further mimic the spatial and temporal properties of the surrounding tumour niche to investigate the specific effects of the environment on disease progression, offering an alternative to animal models for the testing of cancer cell behaviour. Biomaterials can also be used to capture and detect cancer cells in vitro and in vivo to monitor tumour progression. In this Review, we discuss the natural and synthetic biomaterials that can be used to recreate specific features of tumour microenvironments. We examine how biomaterials can be applied to capture circulating tumour cells in blood samples for the early detection of metastasis. We highlight biomaterial-based strategies to investigate local regions adjacent to the tumour and survey potential applications of biomaterial-based devices for diagnosis and prognosis, such as the detection of cellular deformability and the non-invasive surveillance of tumour-adjacent stroma

    Biomaterials to model and measure epithelial cancers

    No full text
    corecore