975 research outputs found

    Opening of a trans-Pangaean marine corridor during the Early Jurassic: Insights from osmium isotopes across the Sinemurian–Pliensbachian GSSP, Robin Hood's Bay, UK

    Get PDF
    The Hispanic Corridor represents a significant phase of continental reorganisation of the Early Jurassic that eventually provided connectivity between the western Tethyan and eastern Pacific oceans along the Central Atlantic rift zone. Although the initiation of this marine corridor profoundly impacted oceanic circulation and marine faunal exchange patterns, the timing of its formation hitherto remains poorly constrained with estimates spanning both the Hettangian and Sinemurian. The Sinemurian–Pliensbachian Global Stratotype Section and Point (GSSP) at Robin Hood's Bay, UK, comprises a succession of well-exposed, immature organic-rich sediments, only previously characterised by strontium, oxygen and carbon isotope geochemistry. New Re and Os isotope profiling indicates substantial variation in seawater chemistry at this time. Initial osmium isotope data become increasing unradiogenic (0.40 to 0.20) across the boundary, providing evidence for a continual flux of unradiogenic Os into the oceans during the latest Sinemurian. The initial unradiogenic 187Os/188Os values indicate the occurrence of low-temperature hydrothermal activity associated with the formation of the Hispanic Corridor during the breakup of Pangaea. Therefore, combined with biogeography and faunal exchange patterns, the Os isotope data demonstrates that connectivity between the Eastern Pacific and Tethyan oceans initiated during the latest Sinemurian. As a result this study better constrains the timing of establishment of the Hispanic Corridor, which was previously limited to poorly defined biogeography

    Large emergency-response exercises: qualitative characteristics - a survey

    Get PDF
    Exercises, drills, or simulations are widely used, by governments, agencies and commercial organizations, to simulate serious incidents and train staff how to respond to them. International cooperation has led to increasingly large-scale exercises, often involving hundreds or even thousands of participants in many locations. The difference between ‘large’ and ‘small’ exercises is more than one of size: (a) Large exercises are more ‘experiential’ and more likely to undermine any model of reality that single organizations may create; (b) they create a ‘play space’ in which organizations and individuals act out their own needs and identifications, and a ritual with strong social implications; (c) group-analytic psychotherapy suggests that the emotions aroused in a large group may be stronger and more difficult to control. Feelings are an unacknowledged major factor in the success or failure of exercises; (d) successful large exercises help improve the nature of trust between individuals and the organizations they represent, changing it from a situational trust to a personal trust; (e) it is more difficult to learn from large exercises or to apply the lessons identified; (f) however, large exercises can help develop organizations and individuals. Exercises (and simulation in general) need to be approached from a broader multidisciplinary direction if their full potential is to be realized

    A New Approach to Systematic Uncertainties and Self-Consistency in Helium Abundance Determinations

    Full text link
    Tests of big bang nucleosynthesis and early universe cosmology require precision measurements for helium abundance determinations. However, efforts to determine the primordial helium abundance via observations of metal poor H II regions have been limited by significant uncertainties. This work builds upon previous work by providing an updated and extended program in evaluating these uncertainties. Procedural consistency is achieved by integrating the hydrogen based reddening correction with the helium based abundance calculation, i.e., all physical parameters are solved for simultaneously. We include new atomic data for helium recombination and collisional emission based upon recent work by Porter et al. and wavelength dependent corrections to underlying absorption are investigated. The set of physical parameters has been expanded here to include the effects of neutral hydrogen collisional emission. Because of a degeneracy between the solutions for density and temperature, the precision of the helium abundance determinations is limited. Also, at lower temperatures (T \lesssim 13,000 K) the neutral hydrogen fraction is poorly constrained resulting in a larger uncertainty in the helium abundances. Thus the derived errors on the helium abundances for individual objects are larger than those typical of previous studies. The updated emissivities and neutral hydrogen correction generally raise the abundance. From a regression to zero metallicity, we find Y_p as 0.2561 \pm 0.0108, in broad agreement with the WMAP result. Tests with synthetic data show a potential for distinct improvement, via removal of underlying absorption, using higher resolution spectra. A small bias in the abundance determination can be reduced significantly and the calculated helium abundance error can be reduced by \sim 25%.Comment: 51 pages, 13 figure

    True and intentionally fabricated memories

    Get PDF
    The aim of the experiment reported here was to investigate the processes underlying the construction of truthful and deliberately fabricated memories. Properties of memories created to be intentionally false - fabricated memories - were compared to properties of memories believed to be true - true memories. Participants recalled and then wrote or spoke true memories and fabricated memories of everyday events. It was found that true memories were reliably more vivid than fabricated memories and were nearly always recalled from a first person perspective. In contrast, fabricated differed from true memories in that they were judged to be reliably older, were more frequently recalled from a third person perspective, and linguistic analysis revealed that they required more cognitive effort to generate. No notable differences were found across modality of reporting. Finally, it was found that, intentionally fabricated memories were created by recalling and then ‘editing’ true memories. Overall, these findings show that true and fabricated memories systematically differ, despite the fact that both are based on true memories

    Spillback Effects of Expansion When Product-Types and Firm-Types Differ

    Full text link
    Contrary to perspectives that credit firms with only limited abilities to undertake significant change successfully, recent research has demonstrated that firms often improve their performance after undertaking major expansion to their operations. In this paper, we build on a study by Mitchell and Singh (1993) to test for differences in expansion effects, depending on whether the new goods substitute for old products and whether the firm is a generalist or specialist participant in the industry. The analysis helps us understand when a business can undertake major change successfully. The results have implications for ecological and other definitions of the core of a business and highlight the necessity for firms to undertake changes even at considerable risk to their existing operations.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/68398/2/10.1177_014920639502100105.pd

    Single Spin Asymmetry ANA_N in Polarized Proton-Proton Elastic Scattering at s=200\sqrt{s}=200 GeV

    Get PDF
    We report a high precision measurement of the transverse single spin asymmetry ANA_N at the center of mass energy s=200\sqrt{s}=200 GeV in elastic proton-proton scattering by the STAR experiment at RHIC. The ANA_N was measured in the four-momentum transfer squared tt range 0.003â©œâˆŁtâˆŁâ©œ0.0350.003 \leqslant |t| \leqslant 0.035 \GeVcSq, the region of a significant interference between the electromagnetic and hadronic scattering amplitudes. The measured values of ANA_N and its tt-dependence are consistent with a vanishing hadronic spin-flip amplitude, thus providing strong constraints on the ratio of the single spin-flip to the non-flip amplitudes. Since the hadronic amplitude is dominated by the Pomeron amplitude at this s\sqrt{s}, we conclude that this measurement addresses the question about the presence of a hadronic spin flip due to the Pomeron exchange in polarized proton-proton elastic scattering.Comment: 12 pages, 6 figure

    Time-integrated luminosity recorded by the BABAR detector at the PEP-II e+e- collider

    Get PDF
    This article is the Preprint version of the final published artcile which can be accessed at the link below.We describe a measurement of the time-integrated luminosity of the data collected by the BABAR experiment at the PEP-II asymmetric-energy e+e- collider at the ϒ(4S), ϒ(3S), and ϒ(2S) resonances and in a continuum region below each resonance. We measure the time-integrated luminosity by counting e+e-→e+e- and (for the ϒ(4S) only) e+e-→Ό+ÎŒ- candidate events, allowing additional photons in the final state. We use data-corrected simulation to determine the cross-sections and reconstruction efficiencies for these processes, as well as the major backgrounds. Due to the large cross-sections of e+e-→e+e- and e+e-→Ό+ÎŒ-, the statistical uncertainties of the measurement are substantially smaller than the systematic uncertainties. The dominant systematic uncertainties are due to observed differences between data and simulation, as well as uncertainties on the cross-sections. For data collected on the ϒ(3S) and ϒ(2S) resonances, an additional uncertainty arises due to ϒ→e+e-X background. For data collected off the ϒ resonances, we estimate an additional uncertainty due to time dependent efficiency variations, which can affect the short off-resonance runs. The relative uncertainties on the luminosities of the on-resonance (off-resonance) samples are 0.43% (0.43%) for the ϒ(4S), 0.58% (0.72%) for the ϒ(3S), and 0.68% (0.88%) for the ϒ(2S).This work is supported by the US Department of Energy and National Science Foundation, the Natural Sciences and Engineering Research Council (Canada), the Commissariat Ă  l’Energie Atomique and Institut National de Physique NuclĂ©aire et de Physiquedes Particules (France), the Bundesministerium fĂŒr Bildung und Forschung and Deutsche Forschungsgemeinschaft (Germany), the Istituto Nazionale di Fisica Nucleare (Italy), the Foundation for Fundamental Research on Matter (The Netherlands), the Research Council of Norway, the Ministry of Education and Science of the Russian Federation, Ministerio de Ciencia e InnovaciĂłn (Spain), and the Science and Technology Facilities Council (United Kingdom). Individuals have received support from the Marie-Curie IEF program (European Union) and the A.P. Sloan Foundation (USA)

    Cultured fish cells metabolize octadecapentaenoic acid (all-cis delta3,6,9,12,15–18∶5) to octadecatetraenoic acid (all-cis delta6,9,12,15–18∶4) via its 2-trans intermediate (trans delta2, all-cis delta6,9,12,15–18∶5)

    Get PDF
    Octadecapentaenoic acid (all-cis Δ3,6,9,12,15-18:5; 18:5n-3) is an unusual fatty acid found in marine dinophytes, haptophytes and prasinophytes. It is not present at higher trophic levels in the marine food web but its metabolism by animals ingesting algae is unknown. Here we studied the metabolism of 18:5n-3 in cell lines derived from turbot (Scophthalmus maximus), gilthead sea bream (Sparus aurata) and Atlantic salmon (Salmo salar). Cells were incubated in the presence of approximately 1 ÎŒM [U-14C] 18:5n-3 methyl ester or [U-14C] 18:4n-3 (octadecatetraenoic acid; all-cis Δ6,9,12,15-18:4) methyl ester, both derived from the alga Isochrysis galbana grown in H14CO3, and also with 25 ÎŒM unlabelled 18:5n-3 or 18:4n-3. Cells were also incubated with 25 ÎŒM trans Δ2, all-cis Δ6,9,12,15-18:5 (2-trans 18:5n-3) produced by alkaline isomerization of 18:5n-3 chemically synthesized from docosahexaenoic acid (all-cis Δ4,7,10,13,16,19-22:6; 22:6n-3). Radio- and mass analyses of total fatty acids extracted from cells incubated with 18:5n-3 were consistent with this fatty acid being rapidly metabolized to 18:4n-3 which was then elongated and further desaturated to eicosatetraenoic acid (all-cis Δ8,11,14,17,19-20:4; 20:4n-3) and eicosapentaenoic acid (all-cis Δ5,8,11,14,17-20:5; 20:5n-3). Similar mass increases of 18:4n-3 and its elongation and further desaturation products occurred in cells incubated with 18:5n-3 or 2-trans 18:5n-3. We conclude that 18:5n-3 is readily converted biochemically to 18:4n-3 via a 2-trans 18:5n-3 intermediate generated by a Δ3,Δ2-enoyl-CoA-isomerase acting on 18:5n-3. Thus, 2-trans 18:5n-3 is implicated as a common intermediate in the ÎČ-oxidation of both 18:5n-3 and 18:4n-3

    Evolution of the differential transverse momentum correlation function with centrality in Au+Au collisions at sNN=200\sqrt{s_{NN}} = 200 GeV

    Get PDF
    We present first measurements of the evolution of the differential transverse momentum correlation function, {\it C}, with collision centrality in Au+Au interactions at sNN=200\sqrt{s_{NN}} = 200 GeV. {\it C} exhibits a strong dependence on collision centrality that is qualitatively similar to that of number correlations previously reported. We use the observed longitudinal broadening of the near-side peak of {\it C} with increasing centrality to estimate the ratio of the shear viscosity to entropy density, η/s\eta/s, of the matter formed in central Au+Au interactions. We obtain an upper limit estimate of η/s\eta/s that suggests that the produced medium has a small viscosity per unit entropy.Comment: 7 pages, 4 figures, STAR paper published in Phys. Lett.

    Measurement of the B0-anti-B0-Oscillation Frequency with Inclusive Dilepton Events

    Get PDF
    The B0B^0-Bˉ0\bar B^0 oscillation frequency has been measured with a sample of 23 million \B\bar B pairs collected with the BABAR detector at the PEP-II asymmetric B Factory at SLAC. In this sample, we select events in which both B mesons decay semileptonically and use the charge of the leptons to identify the flavor of each B meson. A simultaneous fit to the decay time difference distributions for opposite- and same-sign dilepton events gives Δmd=0.493±0.012(stat)±0.009(syst)\Delta m_d = 0.493 \pm 0.012{(stat)}\pm 0.009{(syst)} ps−1^{-1}.Comment: 7 pages, 1 figure, submitted to Physical Review Letter
    • 

    corecore