145 research outputs found

    Producer Nutritional Quality Controls Ecosystem Trophic Structure

    Get PDF
    Trophic structure, or the distribution of biomass among producers and consumers, determines key ecosystem values, such as the abundance of infectious, harvestable or conservation target species, and the storage and cycling of carbon and nutrients. There has been much debate on what controls ecosystem trophic structure, yet the answer is still elusive. Here we show that the nutritional quality of primary producers controls the trophic structure of ecosystems. By increasing the efficiency of trophic transfer, higher producer nutritional quality results in steeper ecosystem trophic structure, and those changes are more pronounced in terrestrial than in aquatic ecosystems probably due to the more stringent nutritional limitation of terrestrial herbivores. These results explain why ecosystems composed of highly nutritional primary producers feature high consumer productivity, fast energy recycling, and reduced carbon accumulation. Anthropogenic changes in producer nutritional quality, via changes in trophic structure, may alter the values and functions of ecosystems, and those alterations may be more important in terrestrial ecosystems

    Rest and Dobutamine stress echocardiography in the evaluation of mid-term results of mitral valve repair in Barlow's disease

    Get PDF
    BACKGROUND: Surgical "anatomical" repair is the most frequent technique used to correct mitral regurgitation due to severe myxomatous valve disease. Debate, however, persists on the efficacy of this technique, as well as on the durability of the repaired valve, and on its functioning and hemodynamics under stress conditions. Thus, a basal and Dobutamine echocardiographic (DSE) study was carried out to evaluate these parameters at mid-term follow-up. METHODS AND RESULTS: Twenty patients selected for the study (12 men and 8 women, mean age 60 ± 9 years) underwent pre- and post-operative transthoracic echocardiography (TTE) and intra-operative transesophageal echocardiography (TEE). At mid-term follow-up (20 ± 5 months) all patients underwent rest TTE and DSE (3 min. dose increments up to 40 microg/Kg/min protocol). Pre-discharge and one-month TTE showed absence of MR in 11 pts., trivial or mild MR in 9 pts. and normal mitral valve area and gradients. Mid-term TTE showed decrease in left atrial and ventricular dimension, in pulmonary artery pressure (sPAP) and grade of MR. During DSE a significant increase in mitral valve area, maximum and mean gradients, sPAP, heart rate and cardiac output and a decrease in systolic annular diameter and left ventricular volume were found; in 6 pts. a transient left ventricular outflow tract obstruction was observed. CONCLUSION: Basal and Dobutamine stress echocardiography proved to be valuable tools for evaluation of mid-term results of mitral valve repair. In our study population, the surgical technique employed had a favourable impact on several cardiac parameters, evaluated by these methods

    Abeta42-Induced Neurodegeneration via an Age-Dependent Autophagic-Lysosomal Injury in Drosophila

    Get PDF
    The mechanism of widespread neuronal death occurring in Alzheimer's disease (AD) remains enigmatic even after extensive investigation during the last two decades. Amyloid beta 42 peptide (Aβ1–42) is believed to play a causative role in the development of AD. Here we expressed human Aβ1–42 and amyloid beta 40 (Aβ1–40) in Drosophila neurons. Aβ1–42 but not Aβ1–40 causes an extensive accumulation of autophagic vesicles that become increasingly dysfunctional with age. Aβ1–42-induced impairment of the degradative function, as well as the structural integrity, of post-lysosomal autophagic vesicles triggers a neurodegenerative cascade that can be enhanced by autophagy activation or partially rescued by autophagy inhibition. Compromise and leakage from post-lysosomal vesicles result in cytosolic acidification, additional damage to membranes and organelles, and erosive destruction of cytoplasm leading to eventual neuron death. Neuronal autophagy initially appears to play a pro-survival role that changes in an age-dependent way to a pro-death role in the context of Aβ1–42 expression. Our in vivo observations provide a mechanistic understanding for the differential neurotoxicity of Aβ1–42 and Aβ1–40, and reveal an Aβ1–42-induced death execution pathway mediated by an age-dependent autophagic-lysosomal injury

    Associative Vocabulary Learning: Development and Testing of Two Paradigms for the (Re-) Acquisition of Action- and Object-Related Words

    Get PDF
    Despite a growing number of studies, the neurophysiology of adult vocabulary acquisition is still poorly understood. One reason is that paradigms that can easily be combined with neuroscientfic methods are rare. Here, we tested the efficiency of two paradigms for vocabulary (re-) acquisition, and compared the learning of novel words for actions and objects. Cortical networks involved in adult native-language word processing are widespread, with differences postulated between words for objects and actions. Words and what they stand for are supposed to be grounded in perceptual and sensorimotor brain circuits depending on their meaning. If there are specific brain representations for different word categories, we hypothesized behavioural differences in the learning of action-related and object-related words. Paradigm A, with the learning of novel words for body-related actions spread out over a number of days, revealed fast learning of these new action words, and stable retention up to 4 weeks after training. The single-session Paradigm B employed objects and actions. Performance during acquisition did not differ between action-related and object-related words (time*word category: p = 0.01), but the translation rate was clearly better for object-related (79%) than for action-related words (53%, p = 0.002). Both paradigms yielded robust associative learning of novel action-related words, as previously demonstrated for object-related words. Translation success differed for action- and object-related words, which may indicate different neural mechanisms. The paradigms tested here are well suited to investigate such differences with neuroscientific means. Given the stable retention and minimal requirements for conscious effort, these learning paradigms are promising for vocabulary re-learning in brain-lesioned people. In combination with neuroimaging, neuro-stimulation or pharmacological intervention, they may well advance the understanding of language learning to optimize therapeutic strategies

    Exploiting evolutionary steering to induce collateral drug sensitivity in cancer

    Get PDF
    Drug resistance mediated by clonal evolution is arguably the biggest problem in cancer therapy today. However, evolving resistance to one drug may come at a cost of decreased fecundity or increased sensitivity to another drug. These evolutionary trade-offs can be exploited using 'evolutionary steering' to control the tumour population and delay resistance. However, recapitulating cancer evolutionary dynamics experimentally remains challenging. Here, we present an approach for evolutionary steering based on a combination of single-cell barcoding, large populations of 108-109 cells grown without re-plating, longitudinal non-destructive monitoring of cancer clones, and mathematical modelling of tumour evolution. We demonstrate evolutionary steering in a lung cancer model, showing that it shifts the clonal composition of the tumour in our favour, leading to collateral sensitivity and proliferative costs. Genomic profiling revealed some of the mechanisms that drive evolved sensitivity. This approach allows modelling evolutionary steering strategies that can potentially control treatment resistance

    Genomic rearrangements in BRCA1 and BRCA2: A literature review

    Get PDF
    Women with mutations in the breast cancer genes BRCA1 or BRCA2 have an increased lifetime risk of developing breast, ovarian and other BRCA-associated cancers. However, the number of detected germline mutations in families with hereditary breast and ovarian cancer (HBOC) syndrome is lower than expected based upon genetic linkage data. Undetected deleterious mutations in the BRCA genes in some high-risk families are due to the presence of intragenic rearrangements such as deletions, duplications or insertions that span whole exons. This article reviews the molecular aspects of BRCA1 and BRCA2 rearrangements and their frequency among different populations. An overview of the techniques used to screen for large rearrangements in BRCA1 and BRCA2 is also presented. The detection of rearrangements in BRCA genes, especially BRCA1, offers a promising outlook for mutation screening in clinical practice, particularly in HBOC families that test negative for a germline mutation assessed by traditional methods

    Cooperation among cancer cells: applying game theory to cancer

    Get PDF
    Cell cooperation promotes many of the hallmarks of cancer via the secretion of diffusible factors that can affect cancer cells or stromal cells in the tumour microenvironment. This cooperation cannot be explained simply as the collective action of cells for the benefit of the tumour because non-cooperative subclones can constantly invade and free-ride on the diffusible factors produced by the cooperative cells. A full understanding of cooperation among the cells of a tumour requires methods and concepts from evolutionary game theory, which has been used successfully in other areas of biology to understand similar problems but has been underutilized in cancer research. Game theory can provide insights into the stability of cooperation among cells in a tumour and into the design of potentially evolution-proof therapies that disrupt this cooperation

    Multi-messenger observations of a binary neutron star merger

    Get PDF
    On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
    corecore