224 research outputs found
A quantum spin transducer based on nano electro-mechancial resonator arrays
Implementation of quantum information processing faces the contradicting
requirements of combining excellent isolation to avoid decoherence with the
ability to control coherent interactions in a many-body quantum system. For
example, spin degrees of freedom of electrons and nuclei provide a good quantum
memory due to their weak magnetic interactions with the environment. However,
for the same reason it is difficult to achieve controlled entanglement of spins
over distances larger than tens of nanometers. Here we propose a universal
realization of a quantum data bus for electronic spin qubits where spins are
coupled to the motion of magnetized mechanical resonators via magnetic field
gradients. Provided that the mechanical system is charged, the magnetic moments
associated with spin qubits can be effectively amplified to enable a coherent
spin-spin coupling over long distances via Coulomb forces. Our approach is
applicable to a wide class of electronic spin qubits which can be localized
near the magnetized tips and can be used for the implementation of hybrid
quantum computing architectures
Detection of reactive ions in the ultracompact HII regions Mon R2 and G29.96-0.02
We report the first detection of the reactive ions CO+ and HOC+ towards
ultracompact (UC) HII regions, particularly in Mon R2 and G29.96-0.02. We have
observed two positions in Mon R2, namely the peak of the UC HII region and a
position in the high density molecular cloud which bounds it. CO+ and HOC+ were
detected at the UC HII region but not at the molecular cloud, as expected if
the CO and HOC emissions arise in the PDR surrounding the \uch. The
measured CO and HOC column densities are of the order of 10
cm in both sources, which yields a strikingly low [HCO]/[HOC]
abundance ratio of 460 in Mon R2. These values are similar to those found in
some other well-known PDRs, like NGC 7023 and the Orion Bar. We briefly discuss
the chemical implications of these results.Comment: 10 pages, 3 figures. Accepted by Astrophysical Journal Letter
An exact expression to calculate the derivatives of position-dependent observables in molecular simulations with flexible constraints
In this work, we introduce an algorithm to compute the derivatives of
physical observables along the constrained subspace when flexible constraints
are imposed on the system (i.e., constraints in which the hard coordinates are
fixed to configuration-dependent values). The presented scheme is exact, it
does not contain any tunable parameter, and it only requires the calculation
and inversion of a sub-block of the Hessian matrix of second derivatives of the
function through which the constraints are defined. We also present a practical
application to the case in which the sought observables are the Euclidean
coordinates of complex molecular systems, and the function whose minimization
defines the constraints is the potential energy. Finally, and in order to
validate the method, which, as far as we are aware, is the first of its kind in
the literature, we compare it to the natural and straightforward
finite-differences approach in three molecules of biological relevance:
methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio
Coreless vortex ground state of the rotating spinor condensate
We study the ground state of the rotating spinor condensate and show that for
slow rotation the ground state of the ferromagnetic spinor condensate is a
coreless vortex. While coreless vortex is not topologically stable, we show
that there is an energetic threshold for the creation of a coreless vortex.
This threshold corresponds to a critical rotation frequency that vanishes as
the system size increases. Also, we demonstrate the dramatically different
behavior of the spinor condensate with anti-ferromagnetic interactions. For
anti-ferromagnetic spinor condensate the angular momentum as a function of
rotation frequency exhibits the familiar staircase behavior, but in contrast to
an ordinary condensate the first step is to the state with angular momentum 1/2
per particle.Comment: v2: Numerical parameters for trapping frequency in z-direction and
for the particle number changed. Two new citations added ([13] and [22]).
More discussion in chapter III A. added. A new Figure 4 added, former figure
4 changed to Figure
Conformally Invariant Gauge Theory of 3-Branes in 6D and the Cosmological Constant
It is shown that the gauge theory of relativistic 3-Branes can be formulated
in a conformally invariant way if the embedding space is six-dimensional. The
implementation of conformal invariance requires the use of a modified measure,
independent of the metric in the action. Brane-world scenarios without the need
of a cosmological constant in 6D are constructed. Thus, no ``old'' cosmological
constant problem appears at this level.Comment: 12 pages, Latex, no figures; final version accepted for publication
in Phys.Rev. D; Sect.II expande
Dzyaloshinskii-Moriya Interaction and Spiral Order in Spin-orbit Coupled Optical Lattices
We show that the recent experimental realization of spin-orbit coupling in
ultracold atomic gases can be used to study different types of spin spiral
order and resulting multiferroic effects. Spin-orbit coupling in optical
lattices can give rise to the Dzyaloshinskii-Moriya (DM) spin interaction which
is essential for spin spiral order. By taking into account spin-orbit coupling
and an external Zeeman field, we derive an effective spin model in the Mott
insulator regime at half filling and demonstrate that the DM interaction in
optical lattices can be made extremely strong with realistic experimental
parameters. The rich finite temperature phase diagrams of the effective spin
models for fermions and bosons are obtained via classical Monte Carlo
simulations.Comment: 7 pages, 5 figure
Cross section measurements of 155,157Gd(n, γ) induced by thermal and epithermal neutrons
© SIF, Springer-Verlag GmbH Germany, part of Springer Nature 2019Neutron capture cross section measurements on 155Gd and 157Gd were performed using the time-of-flight technique at the n_TOF facility at CERN on isotopically enriched samples. The measurements were carried out in the n_TOF experimental area EAR1, at 185 m from the neutron source, with an array of 4 C6D6 liquid scintillation detectors. At a neutron kinetic energy of 0.0253 eV, capture cross sections of 62.2(2.2) and 239.8(8.4) kilobarn have been derived for 155Gd and 157Gd, respectively, with up to 6% deviation relative to values presently reported in nuclear data libraries, but consistent with those values within 1.6 standard deviations. A resonance shape analysis has been performed in the resolved resonance region up to 181 eV and 307 eV, respectively for 155Gd and 157Gd, where on average, resonance parameters have been found in good agreement with evaluations. Above these energies and up to 1 keV, the observed resonance-like structure of the cross section has been analysed and characterised. From a statistical analysis of the observed neutron resonances we deduced: neutron strength function of 2. 01 (28) × 10 - 4 and 2. 17 (41) × 10 - 4; average total radiative width of 106.8(14) meV and 101.1(20) meV and s-wave resonance spacing 1.6(2) eV and 4.8(5) eV for n + 155Gd and n + 157Gd systems, respectively.Peer reviewedFinal Accepted Versio
Equivalence of three-dimensional spacetimes
A solution to the equivalence problem in three-dimensional gravity is given
and a practically useful method to obtain a coordinate invariant description of
local geometry is presented. The method is a nontrivial adaptation of Karlhede
invariant classification of spacetimes of general relativity. The local
geometry is completely determined by the curvature tensor and a finite number
of its covariant derivatives in a frame where the components of the metric are
constants. The results are presented in the framework of real two-component
spinors in three-dimensional spacetimes, where the algebraic classifications of
the Ricci and Cotton-York spinors are given and their isotropy groups and
canonical forms are determined. As an application we discuss Goedel-type
spacetimes in three-dimensional General Relativity. The conditions for local
space and time homogeneity are derived and the equivalence of three-dimensional
Goedel-type spacetimes is studied and the results are compared with previous
works on four-dimensional Goedel-type spacetimes.Comment: 13 pages - content changes and corrected typo
Molecular excitation in the Interstellar Medium: recent advances in collisional, radiative and chemical processes
We review the different excitation processes in the interstellar mediumComment: Accepted in Chem. Re
Search for pair-produced long-lived neutral particles decaying to jets in the ATLAS hadronic calorimeter in ppcollisions at √s=8TeV
The ATLAS detector at the Large Hadron Collider at CERN is used to search for the decay of a scalar boson to a pair of long-lived particles, neutral under the Standard Model gauge group, in 20.3fb−1of data collected in proton–proton collisions at √s=8TeV. This search is sensitive to long-lived particles that decay to Standard Model particles producing jets at the outer edge of the ATLAS electromagnetic calorimeter or inside the hadronic calorimeter. No significant excess of events is observed. Limits are reported on the product of the scalar boson production cross section times branching ratio into long-lived neutral particles as a function of the proper lifetime of the particles. Limits are reported for boson masses from 100 GeVto 900 GeV, and a long-lived neutral particle mass from 10 GeVto 150 GeV
- …