In this work, we introduce an algorithm to compute the derivatives of
physical observables along the constrained subspace when flexible constraints
are imposed on the system (i.e., constraints in which the hard coordinates are
fixed to configuration-dependent values). The presented scheme is exact, it
does not contain any tunable parameter, and it only requires the calculation
and inversion of a sub-block of the Hessian matrix of second derivatives of the
function through which the constraints are defined. We also present a practical
application to the case in which the sought observables are the Euclidean
coordinates of complex molecular systems, and the function whose minimization
defines the constraints is the potential energy. Finally, and in order to
validate the method, which, as far as we are aware, is the first of its kind in
the literature, we compare it to the natural and straightforward
finite-differences approach in three molecules of biological relevance:
methanol, N-methyl-acetamide and a tri-glycine peptideComment: 13 pages, 8 figures, published versio