128 research outputs found

    Temporal and spatial variation in pharmaceutical concentrations in an urban river system

    Get PDF
    Many studies have quantified pharmaceuticals in the environment, few however, have incorporated detailed temporal and spatial variability due to associated costs in terms of time and materials. Here, we target 33 physico-chemically diverse pharmaceuticals in a spatiotemporal exposure study into the occurrence of pharmaceuticals in the wastewater system and the Rivers Ouse and Foss (two diverse river systems) in the city of York, UK. Removal rates in two of the WWTPs sampled (a conventional activated sludge (CAS) and trickling filter plant) ranged from not eliminated (carbamazepine) to >99% (paracetamol). Data comparisons indicate that pharmaceutical exposures in river systems are highly variable regionally, in part due to variability in prescribing practices, hydrology, wastewater management, and urbanisation and that select annual median pharmaceutical concentrations observed in this study were higher than those previously observed in the European Union and Asia thus far. Significant spatial variability was found between all sites in both river systems, while seasonal variability was significant for 86% and 50% of compounds in the River Foss and Ouse, respectively. Seasonal variations in flow, in-stream attenuation, usage and septic effluent releases are suspected drivers behind some of the observed temporal exposure variability. When the data were used to evaluate a simple environmental exposure model for pharmaceuticals, mean ratios of predicted environmental concentrations (PECs), obtained using the model, to measured environmental concentrations (MECs) were 0.51 and 0.04 for the River Foss and River Ouse, respectively. Such PEC/MEC ratios indicate that the model underestimates actual concentrations in both river systems, but to a much greater extent in the larger River Ouse

    Diversification and dispersal of the Hawaiian Drosophilidae: The evolution of Scaptomyza

    Full text link
    The genus Scaptomyza is emerging as a model lineage in which to study biogeography and ecological adaptation. To place future research on these species into an evolutionary framework we present the most comprehensive phylogeny of Scaptomyza to date, based on 5042 bp of DNA sequence data and representatives from 13 of 21 subgenera. We find evidence that the lineage originated in the Hawaiian Islands and subsequently dispersed to the mainland and other remote oceanic islands. We also identify that many of the unique ecological niches exploited by this lineage (e.g., herbivory, spider predation) arose singly and independently. We find strong support for the monophyly of almost all subgenera with exceptions corroborating hypotheses of conflict inferred from previous taxonomic studies

    ‘GMO-FREE ’ LABELS – ENHANCING TRANSPARENCY OR DECEIVING

    No full text
    Copyright 2009 by authors. All rights reserved. Readers may make verbatim copies of this document for non-commercial purposes by any means, provided that this copyright notice appears on all such copies. Vortrag anlĂ€sslich der 49. Jahrestagung der GEWISOLA „Agrar- und ErnĂ€hrungsmĂ€rkte nach dem Boom
    • 

    corecore