13 research outputs found

    Measurement of the cross section for isolated-photon plus jet production in pp collisions at √s=13 TeV using the ATLAS detector

    Get PDF
    The dynamics of isolated-photon production in association with a jet in proton–proton collisions at a centre-of-mass energy of 13 TeV are studied with the ATLAS detector at the LHC using a dataset with an integrated luminosity of 3.2 fb−1. Photons are required to have transverse energies above 125 GeV. Jets are identified using the anti- algorithm with radius parameter and required to have transverse momenta above 100 GeV. Measurements of isolated-photon plus jet cross sections are presented as functions of the leading-photon transverse energy, the leading-jet transverse momentum, the azimuthal angular separation between the photon and the jet, the photon–jet invariant mass and the scattering angle in the photon–jet centre-of-mass system. Tree-level plus parton-shower predictions from Sherpa and Pythia as well as next-to-leading-order QCD predictions from Jetphox and Sherpa are compared to the measurements

    A search for resonances decaying into a Higgs boson and a new particle X in the XH → qqbb final state with the ATLAS detector

    Get PDF
    A search for heavy resonances decaying into a Higgs boson (H) and a new particle (X) is reported, utilizing 36.1 fb−1 of proton–proton collision data at collected during 2015 and 2016 with the ATLAS detector at the CERN Large Hadron Collider. The particle X is assumed to decay to a pair of light quarks, and the fully hadronic final state is analysed. The search considers the regime of high XH resonance masses, where the X and H bosons are both highly Lorentz-boosted and are each reconstructed using a single jet with large radius parameter. A two-dimensional phase space of XH mass versus X mass is scanned for evidence of a signal, over a range of XH resonance mass values between 1 TeV and 4 TeV, and for X particles with masses from 50 GeV to 1000 GeV. All search results are consistent with the expectations for the background due to Standard Model processes, and 95% CL upper limits are set, as a function of XH and X masses, on the production cross-section of the resonance

    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam =4 TeV

    Get PDF
    Results of dedicated Monte Carlo simulations of beam-induced background (BIB) in the ATLAS experiment at the Large Hadron Collider (LHC) are presented and compared with data recorded in 2012. During normal physics operation this background arises mainly from scattering of the 4 TeV protons on residual gas in the beam pipe. Methods of reconstructing the BIB signals in the ATLAS detector, developed and implemented in the simulation chain based on the \textscFluka Monte Carlo simulation package, are described. The interaction rates are determined from the residual gas pressure distribution in the LHC ring in order to set an absolute scale on the predicted rates of BIB so that they can be compared quantitatively with data. Through these comparisons the origins of the BIB leading to different observables in the ATLAS detectors are analysed. The level of agreement between simulation results and BIB measurements by ATLAS in 2012 demonstrates that a good understanding of the origin of BIB has been reached

    Search for an invisibly decaying Higgs boson or dark matter candidates produced in association with a Z boson in pp collisions at root s=13 TeV with the ATLAS detector

    Get PDF
    SCOAP

    Health in times of uncertainty in the eastern Mediterranean region, 1990�2013: a systematic analysis for the Global Burden of Disease Study 2013

    Get PDF
    Background The eastern Mediterranean region is comprised of 22 countries: Afghanistan, Bahrain, Djibouti, Egypt, Iran, Iraq, Jordan, Kuwait, Lebanon, Libya, Morocco, Oman, Pakistan, Palestine, Qatar, Saudi Arabia, Somalia, Sudan, Syria, Tunisia, the United Arab Emirates, and Yemen. Since our Global Burden of Disease Study 2010 (GBD 2010), the region has faced unrest as a result of revolutions, wars, and the so-called Arab uprisings. The objective of this study was to present the burden of diseases, injuries, and risk factors in the eastern Mediterranean region as of 2013. Methods GBD 2013 includes an annual assessment covering 188 countries from 1990 to 2013. The study covers 306 diseases and injuries, 1233 sequelae, and 79 risk factors. Our GBD 2013 analyses included the addition of new data through updated systematic reviews and through the contribution of unpublished data sources from collaborators, an updated version of modelling software, and several improvements in our methods. In this systematic analysis, we use data from GBD 2013 to analyse the burden of disease and injuries in the eastern Mediterranean region specifically. Findings The leading cause of death in the region in 2013 was ischaemic heart disease (90·3 deaths per 100�000 people), which increased by 17·2 since 1990. However, diarrhoeal diseases were the leading cause of death in Somalia (186·7 deaths per 100�000 people) in 2013, which decreased by 26·9 since 1990. The leading cause of disability-adjusted life-years (DALYs) was ischaemic heart disease for males and lower respiratory infection for females. High blood pressure was the leading risk factor for DALYs in 2013, with an increase of 83·3 since 1990. Risk factors for DALYs varied by country. In low-income countries, childhood wasting was the leading cause of DALYs in Afghanistan, Somalia, and Yemen, whereas unsafe sex was the leading cause in Djibouti. Non-communicable risk factors were the leading cause of DALYs in high-income and middle-income countries in the region. DALY risk factors varied by age, with child and maternal malnutrition affecting the younger age groups (aged 28 days to 4 years), whereas high bodyweight and systolic blood pressure affected older people (aged 60�80 years). The proportion of DALYs attributed to high body-mass index increased from 3·7 to 7·5 between 1990 and 2013. Burden of mental health problems and drug use increased. Most increases in DALYs, especially from non-communicable diseases, were due to population growth. The crises in Egypt, Yemen, Libya, and Syria have resulted in a reduction in life expectancy; life expectancy in Syria would have been 5 years higher than that recorded for females and 6 years higher for males had the crisis not occurred. Interpretation Our study shows that the eastern Mediterranean region is going through a crucial health phase. The Arab uprisings and the wars that followed, coupled with ageing and population growth, will have a major impact on the region's health and resources. The region has historically seen improvements in life expectancy and other health indicators, even under stress. However, the current situation will cause deteriorating health conditions for many countries and for many years and will have an impact on the region and the rest of the world. Based on our findings, we call for increased investment in health in the region in addition to reducing the conflicts. Funding Bill & Melinda Gates Foundation. © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY licens

    Measurement of prompt photon production in sNN=8.16 TeV p + Pb collisions with ATLAS

    Get PDF
    The inclusive production rates of isolated, prompt photons in p+Pb collisions at s=8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb recorded in 2016. The cross-section and nuclear modification factor R are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (−2.83,−2.02), (−1.84,0.91), and (1.09,1.90). The cross-section and R values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei

    Global burden of diseases, injuries, and risk factors for young people's health during 1990�2013: a systematic analysis for the Global Burden of Disease Study 2013

    No full text
    Background Young people's health has emerged as a neglected yet pressing issue in global development. Changing patterns of young people's health have the potential to undermine future population health as well as global economic development unless timely and effective strategies are put into place. We report the past, present, and anticipated burden of disease in young people aged 10�24 years from 1990 to 2013 using data on mortality, disability, injuries, and health risk factors. Methods The Global Burden of Disease Study 2013 (GBD 2013) includes annual assessments for 188 countries from 1990 to 2013, covering 306 diseases and injuries, 1233 sequelae, and 79 risk factors. We used the comparative risk assessment approach to assess how much of the burden of disease reported in a given year can be attributed to past exposure to a risk. We estimated attributable burden by comparing observed health outcomes with those that would have been observed if an alternative or counterfactual level of exposure had occurred in the past. We applied the same method to previous years to allow comparisons from 1990 to 2013. We cross-tabulated the quantiles of disability-adjusted life-years (DALYs) by quintiles of DALYs annual increase from 1990 to 2013 to show rates of DALYs increase by burden. We used the GBD 2013 hierarchy of causes that organises 306 diseases and injuries into four levels of classification. Level one distinguishes three broad categories: first, communicable, maternal, neonatal, and nutritional disorders; second, non-communicable diseases; and third, injuries. Level two has 21 mutually exclusive and collectively exhaustive categories, level three has 163 categories, and level four has 254 categories. Findings The leading causes of death in 2013 for young people aged 10�14 years were HIV/AIDS, road injuries, and drowning (25·2), whereas transport injuries were the leading cause of death for ages 15�19 years (14·2) and 20�24 years (15·6). Maternal disorders were the highest cause of death for young women aged 20�24 years (17·1) and the fourth highest for girls aged 15�19 years (11·5) in 2013. Unsafe sex as a risk factor for DALYs increased from the 13th rank to the second for both sexes aged 15�19 years from 1990 to 2013. Alcohol misuse was the highest risk factor for DALYs (7·0 overall, 10·5 for males, and 2·7 for females) for young people aged 20�24 years, whereas drug use accounted for 2·7 (3·3 for males and 2·0 for females). The contribution of risk factors varied between and within countries. For example, for ages 20�24 years, drug use was highest in Qatar and accounted for 4·9 of DALYs, followed by 4·8 in the United Arab Emirates, whereas alcohol use was highest in Russia and accounted for 21·4, followed by 21·0 in Belarus. Alcohol accounted for 9·0 (ranging from 4·2 in Hong Kong to 11·3 in Shandong) in China and 11·6 (ranging from 10·1 in Aguascalientes to 14·9 in Chihuahua) of DALYs in Mexico for young people aged 20�24 years. Alcohol and drug use in those aged 10�24 years had an annual rate of change of >1·0 from 1990 to 2013 and accounted for more than 3·1 of DALYs. Interpretation Our findings call for increased efforts to improve health and reduce the burden of disease and risks for diseases in later life in young people. Moreover, because of the large variations between countries in risks and burden, a global approach to improve health during this important period of life will fail unless the particularities of each country are taken into account. Finally, our results call for a strategy to overcome the financial and technical barriers to adequately capture young people's health risk factors and their determinants in health information systems. Funding Bill & Melinda Gates Foundation. © 2016 Elsevier Lt

    Study of the material of the ATLAS inner detector for Run 2 of the LHC

    Get PDF
    WOS: 000417761100006The ATLAS inner detector comprises three different sub-detectors: the pixel detector, the silicon strip tracker, and the transition-radiation drift-tube tracker. The Insertable B-Layer, a new innermost pixel layer, was installed during the shutdown period in 2014, together with modifications to the layout of the cables and support structures of the existing pixel detector. The material in the inner detector is studied with several methods, using a low-luminosity root s = 13 TeV pp collision sample corresponding to around 2.0 nb(-1) collected in 2015 with the ATLAS experiment at the LHC. In this paper, the material within the innermost barrel region is studied using reconstructed hadronic interaction and photon conversion vertices. For the forward rapidity region, the material is probed by a measurement of the efficiency with which single tracks reconstructed from pixel detector hits alone can be extended with hits on the track in the strip layers. The results of these studies have been taken into account in an improved description of the material in the ATLAS inner detector simulation, resulting in a reduction in the uncertainties associated with the charged-particle reconstruction efficiency determined from simulation.ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, China; Hong Kong SAR, China; ISF, IsraelIsrael Science Foundation; I-CORE , Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); FP7, European UnionEuropean Union (EU); Horizon, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissement d'Avenir Labex, FranceFrench National Research Agency (ANR); ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Spain; Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; Canton of Geneva, Switzerland; Investissement d'Avenir Idex, FranceFrench National Research Agency (ANR); ANPCyT, ArgentinaANPCyT; YerPhI, Armenia; ARC, AustraliaAustralian Research Council; BMWFW, Austria; FWF, AustriaAustrian Science Fund (FWF); ANAS, AzerbaijanAzerbaijan National Academy of Sciences (ANAS); SSTC, Belarus; CNPq, BrazilNational Council for Scientific and Technological Development (CNPq); FAPESP, BrazilFundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP); NSERC, CanadaNatural Sciences and Engineering Research Council of Canada; NRC, Canada; CFI, CanadaCanada Foundation for Innovation; CERN; CONICYT, ChileComision Nacional de Investigacion Cientifica y Tecnologica (CONICYT); CAS, ChinaChinese Academy of Sciences; MOST, ChinaMinistry of Science and Technology, China; NSFC, ChinaNational Natural Science Foundation of China; COLCIENCIAS, ColombiaDepartamento Administrativo de Ciencia, Tecnologia e Innovacion Colciencias; MSMT CR, Czech RepublicMinistry of Education, Youth & Sports - Czech RepublicCzech Republic Government; MPO CR, Czech RepublicCzech Republic Government; VSC CR, Czech RepublicCzech Republic Government; DNRF, Denmark; DNSRC, DenmarkDanish Natural Science Research Council; IN2P3-CNRS, FranceCentre National de la Recherche Scientifique (CNRS); CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, GermanyFederal Ministry of Education & Research (BMBF); HGF, Germany; MPG, GermanyMax Planck Society; GSRT, GreeceGreek Ministry of Development-GSRT; RGC, China; Hong Kong SAR, China; ISF, IsraelIsrael Science Foundation; I-CORE , Israel; Benoziyo Center, Israel; INFN, ItalyIstituto Nazionale di Fisica Nucleare; MEXT, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT); JSPS, JapanMinistry of Education, Culture, Sports, Science and Technology, Japan (MEXT)Japan Society for the Promotion of Science; CNRST, Morocco; NWO, NetherlandsNetherlands Organization for Scientific Research (NWO)Netherlands Government; RCN, Norway; MNiSW, PolandMinistry of Science and Higher Education, Poland; NCN, Poland; FCT, PortugalPortuguese Foundation for Science and Technology; MNE/IFA, Romania; MES of Russia; NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS, SloveniaSlovenian Research Agency - Slovenia; MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC, Sweden; Wallenberg Foundation, Sweden; SERI, Switzerland; SNSF, SwitzerlandSwiss National Science Foundation (SNSF); Canton of Bern, Switzerland; MOST, TaiwanMinistry of Science and Technology, Taiwan; TAEK, TurkeyMinistry of Energy & Natural Resources - Turkey; STFC, United KingdomScience & Technology Facilities Council (STFC); DOE, United States of AmericaUnited States Department of Energy (DOE); NSF, United States of AmericaNational Science Foundation (NSF); BCKDF, Canada; Canada Council, Canada; CANARIE, Canada; CRC, Canada; Compute Canada, Canada; FQRNT, CanadaFQRNT; Ontario Innovation Trust, Canada; EPLANET, European UnionEuropean Union (EU); ERC, European UnionEuropean Union (EU)European Research Council (ERC); ERDF, European UnionEuropean Union (EU); FP7, European UnionEuropean Union (EU); Horizon, European Union; Marie Sklodowska-Curie Actions, European UnionEuropean Union (EU); Investissement d'Avenir Labex, FranceFrench National Research Agency (ANR); ANR, FranceFrench National Research Agency (ANR); Region Auvergne, FranceRegion Auvergne-Rhone-Alpes; Fondation Partager le Savoir, France; DFG, GermanyGerman Research Foundation (DFG); AvH Foundation, GermanyAlexander von Humboldt Foundation; Herakleitos programme - EU-ESF; Thales programme - EU-ESF; Aristeia programme - EU-ESF; Greek NSRFGreek Ministry of Development-GSRT; BSF, IsraelUS-Israel Binational Science Foundation; GIF, IsraelGerman-Israeli Foundation for Scientific Research and Development; Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Spain; Generalitat Valenciana, SpainGeneralitat Valenciana; Royal Society, United KingdomRoyal Society of London; Leverhulme Trust, United KingdomLeverhulme Trust; Canton of Geneva, Switzerland; Investissement d'Avenir Idex, FranceFrench National Research Agency (ANR)We acknowledge the support of ANPCyT, Argentina; YerPhI, Armenia; ARC, Australia; BMWFW and FWF, Austria; ANAS, Azerbaijan; SSTC, Belarus; CNPq and FAPESP, Brazil; NSERC, NRC and CFI, Canada; CERN; CONICYT, Chile; CAS, MOST and NSFC, China; COLCIENCIAS, Colombia; MSMT CR, MPO CR and VSC CR, Czech Republic; DNRF and DNSRC, Denmark; IN2P3-CNRS, CEA-DSM/IRFU, France; SRNSF, Georgia; BMBF, HGF, and MPG, Germany; GSRT, Greece; RGC, Hong Kong SAR, China; ISF, I-CORE and Benoziyo Center, Israel; INFN, Italy; MEXT and JSPS, Japan; CNRST, Morocco; NWO, Netherlands; RCN, Norway; MNiSW and NCN, Poland; FCT, Portugal; MNE/IFA, Romania; MES of Russia and NRC KI, Russian Federation; JINR; MESTD, Serbia; MSSR, Slovakia; ARRS and MIZS, Slovenia; DST/NRF, South Africa; MINECO, Spain; SRC and Wallenberg Foundation, Sweden; SERI, SNSF and Cantons of Bern and Geneva, Switzerland; MOST, Taiwan; TAEK, Turkey; STFC, United Kingdom; DOE and NSF, United States of America. In addition, individual groups and members have received support from BCKDF, the Canada Council, CANARIE, CRC, Compute Canada, FQRNT, and the Ontario Innovation Trust, Canada; EPLANET, ERC, ERDF, FP7, Horizon 2020 and Marie Sklodowska-Curie Actions, European Union; Investissements d'Avenir Labex and Idex, ANR, Region Auvergne and Fondation Partager le Savoir, France; DFG and AvH Foundation, Germany; Herakleitos, Thales and Aristeia programmes co-financed by EU-ESF and the Greek NSRF; BSF, GIF and Minerva, Israel; BRF, Norway; CERCA Programme Generalitat de Catalunya, Generalitat Valenciana, Spain; the Royal Society and Leverhulme Trust, United Kingdom

    Comparison between simulated and observed LHC beam backgrounds in the ATLAS experiment at Ebeam=4 TeV

    No full text
    corecore