45 research outputs found
Towards the third dimension in direct electron beam writing of silver
Carboxylates constitute an extremely promising class of precursor compounds for the electron beam induced deposition of silver. In this work both silver 2,2 dimethylbutyrate and silver pentafluoropropionate were investigated with respect to their dwell time dependent deposition behavior and growth characteristics. While silver 2,2 dimethylbutyrate showed a strong depletion in the center of the impinging electron beam profile hindering any vertical growth, silver pentafluoropropionate indicated a pronounced dependency of the deposit height on the dwell time. Truly three dimensional silver structures could be realized with silver pentafluoropropionate. The pillars displayed a polycrystalline habit with silver contents of more than 50 at. and strong Raman enhancement constituting a promising route towards direct electron beam writing of three dimensional plasmonic device parts from the gas phase
Functional Brain Networks Develop from a “Local to Distributed” Organization
The mature human brain is organized into a collection of specialized functional networks that flexibly interact to support various cognitive functions. Studies of development often attempt to identify the organizing principles that guide the maturation of these functional networks. In this report, we combine resting state functional connectivity MRI (rs-fcMRI), graph analysis, community detection, and spring-embedding visualization techniques to analyze four separate networks defined in earlier studies. As we have previously reported, we find, across development, a trend toward ‘segregation’ (a general decrease in correlation strength) between regions close in anatomical space and ‘integration’ (an increased correlation strength) between selected regions distant in space. The generalization of these earlier trends across multiple networks suggests that this is a general developmental principle for changes in functional connectivity that would extend to large-scale graph theoretic analyses of large-scale brain networks. Communities in children are predominantly arranged by anatomical proximity, while communities in adults predominantly reflect functional relationships, as defined from adult fMRI studies. In sum, over development, the organization of multiple functional networks shifts from a local anatomical emphasis in children to a more “distributed” architecture in young adults. We argue that this “local to distributed” developmental characterization has important implications for understanding the development of neural systems underlying cognition. Further, graph metrics (e.g., clustering coefficients and average path lengths) are similar in child and adult graphs, with both showing “small-world”-like properties, while community detection by modularity optimization reveals stable communities within the graphs that are clearly different between young children and young adults. These observations suggest that early school age children and adults both have relatively efficient systems that may solve similar information processing problems in divergent ways
HER2-Mediated Internalization of Cytotoxic Agents in ERBB2 Amplified or Mutant Lung Cancers
Amplification and oncogenic mutations of ERBB2, the gene encoding the HER2 receptor tyrosine kinase, promote receptor hyperactivation and tumor growth. Here we demonstrate that HER2 ubiquitination and internalization, rather than its overexpression, are key mechanisms underlying endocytosis and consequent efficacy of the anti-HER2 antibody-drug conjugates (ADCs) ado-trastuzumab emtansine (T-DM1) and trastuzumab deruxtecan (T-DXd) in lung cancer cell lines and patient-derived xenograft models. These data translated into a 51% response rate in a clinical trial of T-DM1 in 49 patients with ERBB2/HER2-amplified or mutant lung cancers. We show that co-treatment with irreversible pan-HER inhibitors enhances receptor ubiquitination and consequent ADC internalization and efficacy. We also demonstrate that ADC switching to T-DXd, which harbors a different cytotoxic payload, achieves durable responses in a patient with lung cancer and corresponding xenograft model developing resistance to T-DM1. Our findings may help guide future clinical trials and expand the field of ADC as cancer therapy
Polygenic prediction of educational attainment within and between families from genome-wide association analyses in 3 million individuals
We conduct a genome-wide association study (GWAS) of educational attainment (EA) in a sample of ~3 million individuals and identify 3,952 approximately uncorrelated genome-wide-significant single-nucleotide polymorphisms (SNPs). A genome-wide polygenic predictor, or polygenic index (PGI), explains 12-16% of EA variance and contributes to risk prediction for ten diseases. Direct effects (i.e., controlling for parental PGIs) explain roughly half the PGI's magnitude of association with EA and other phenotypes. The correlation between mate-pair PGIs is far too large to be consistent with phenotypic assortment alone, implying additional assortment on PGI-associated factors. In an additional GWAS of dominance deviations from the additive model, we identify no genome-wide-significant SNPs, and a separate X-chromosome additive GWAS identifies 57
The 2010 very high energy gamma-ray flare & 10 years of multi-wavelength observations of M 87
Abridged: The giant radio galaxy M 87 with its proximity, famous jet, and
very massive black hole provides a unique opportunity to investigate the origin
of very high energy (VHE; E>100 GeV) gamma-ray emission generated in
relativistic outflows and the surroundings of super-massive black holes. M 87
has been established as a VHE gamma-ray emitter since 2006. The VHE gamma-ray
emission displays strong variability on timescales as short as a day. In this
paper, results from a joint VHE monitoring campaign on M 87 by the MAGIC and
VERITAS instruments in 2010 are reported. During the campaign, a flare at VHE
was detected triggering further observations at VHE (H.E.S.S.), X-rays
(Chandra), and radio (43 GHz VLBA). The excellent sampling of the VHE gamma-ray
light curve enables one to derive a precise temporal characterization of the
flare: the single, isolated flare is well described by a two-sided exponential
function with significantly different flux rise and decay times. While the
overall variability pattern of the 2010 flare appears somewhat different from
that of previous VHE flares in 2005 and 2008, they share very similar
timescales (~day), peak fluxes (Phi(>0.35 TeV) ~= (1-3) x 10^-11 ph cm^-2
s^-1), and VHE spectra. 43 GHz VLBA radio observations of the inner jet regions
indicate no enhanced flux in 2010 in contrast to observations in 2008, where an
increase of the radio flux of the innermost core regions coincided with a VHE
flare. On the other hand, Chandra X-ray observations taken ~3 days after the
peak of the VHE gamma-ray emission reveal an enhanced flux from the core. The
long-term (2001-2010) multi-wavelength light curve of M 87, spanning from radio
to VHE and including data from HST, LT, VLA and EVN, is used to further
investigate the origin of the VHE gamma-ray emission. No unique, common MWL
signature of the three VHE flares has been identified.Comment: 19 pages, 5 figures; Corresponding authors: M. Raue, L. Stawarz, D.
Mazin, P. Colin, C. M. Hui, M. Beilicke; Fig. 1 lightcurve data available
online: http://www.desy.de/~mraue/m87
Multi-messenger observations of a binary neutron star merger
On 2017 August 17 a binary neutron star coalescence candidate (later designated GW170817) with merger time 12:41:04 UTC was observed through gravitational waves by the Advanced LIGO and Advanced Virgo detectors. The Fermi Gamma-ray Burst Monitor independently detected a gamma-ray burst (GRB 170817A) with a time delay of ~1.7 s with respect to the merger time. From the gravitational-wave signal, the source was initially localized to a sky region of 31 deg2 at a luminosity distance of 40+8-8 Mpc and with component masses consistent with neutron stars. The component masses were later measured to be in the range 0.86 to 2.26 Mo. An extensive observing campaign was launched across the electromagnetic spectrum leading to the discovery of a bright optical transient (SSS17a, now with the IAU identification of AT 2017gfo) in NGC 4993 (at ~40 Mpc) less than 11 hours after the merger by the One- Meter, Two Hemisphere (1M2H) team using the 1 m Swope Telescope. The optical transient was independently detected by multiple teams within an hour. Subsequent observations targeted the object and its environment. Early ultraviolet observations revealed a blue transient that faded within 48 hours. Optical and infrared observations showed a redward evolution over ~10 days. Following early non-detections, X-ray and radio emission were discovered at the transient’s position ~9 and ~16 days, respectively, after the merger. Both the X-ray and radio emission likely arise from a physical process that is distinct from the one that generates the UV/optical/near-infrared emission. No ultra-high-energy gamma-rays and no neutrino candidates consistent with the source were found in follow-up searches. These observations support the hypothesis that GW170817 was produced by the merger of two neutron stars in NGC4993 followed by a short gamma-ray burst (GRB 170817A) and a kilonova/macronova powered by the radioactive decay of r-process nuclei synthesized in the ejecta
What Role Does Grit Play in the Academic Success of Black Male Collegians at Predominantly White Institutions?
This study tests the importance of a noncognitive trait, grit, to predicting grades for a sample of Black males attending a predominantly White institution. Using multivariate statistics and hierarchical regression techniques, results suggest that grit is positively related to college grades for Black males and that background traits, academic factors, and grit explain 24 % of the variance in Black male's college grades. Grit, alone, added incremental predictive validity over and beyond traditional measures of academic success such as high school grade point average and American College Test scores. Implications for policy and practice are highlighted