267 research outputs found

    Teaching Global Citizenship in a Muslim-Majority Country: Perspectives of Teachers from the Religious, National, and International Education Sectors in Pakistan

    Get PDF
    Pakistan is a Muslim-majority country, and religion plays a great role in the life of society. This study examines how teachers from the religious, national, and international education sectors realize the concept of global citizenship education (GCE) in Pakistan. Based on 24 semi-structured interviews, this study found differences among the teachers’ understandings of the concept of GCE and its characteristics. Teachers from the national and religious curriculum sectors viewed GCE as a threat to Islamic values, whereas those from the international curriculum sector regarded GCE as an opportunity for improving the economic development and image of Pakistan. Moreover, the teachers from the religious sector argued for the cultivation of Islamic identity instead of GCE. However, the teachers from the national curriculum sector noted the economic benefits of GCE and were keen on global citizenship principles that do not conflict with national and Islamic values. The different perceptions held by teachers from the three educational sectors indicate the need for more work on GCE to narrow the conflicting agendas and broaden the understandings within Pakistani society. Creating common ideas within these different sectors of education is significant for developing sustainable peace within the divided society

    The Success Story Of First Ever Polymer Flood Field Pilot To Enhance The Recovery Of Heavy Oils On Alaska\u27s North Slope

    Get PDF
    The primary goal of the first ever polymer flood field pilot at Milne Point is to validate the use of polymers for heavy oil Enhanced Oil Recovery (EOR) on Alaska North Slope (ANS). The specific objectives are systematic evaluation of advanced technology that integrates polymer flooding, low salinity water flooding, horizontal wells, and numerical simulation based on polymer flood performance data. Accordingly, under the co-sponsorship of the US Department of Energy and Hilcorp Alaska LLC the first ever polymer field pilot commenced on August 28, 2018 in the Schrader Bluff heavy oil reservoir at the Milne Point Unit (MPU) on ANS. The pilot started injecting hydrolyzed polyacrylamide (HPAM), at a concentration of 1,750 ppm to achieve a target viscosity of 45 cP, into the two horizontal injectors in the J-pad flood pattern. Since July 2020, HPAM concentration was reduced to 1,200 ppm to control injectivity and optimize polymer utilization. Filter ratio tests conducted on site ensure uniform polymer solution properties. Injectivity is assessed by Hall plots, whereas production is monitored via oil and water rates from the two producers. Water samples are analyzed to determine the produced polymer concentration. Supporting laboratory core floods on polymer retention, injection water salinity, polymer loading, and their combinations on oil recovery, match rock, fluid and test conditions. A calibrated and validated numerical multiphase reservoir model was developed for long-term reservoir performance prediction and for evaluating the project\u27s economic performance in conjunction with an economic model. Concerns related to handling of produced fluids containing polymer are addressed by specialized experiments. As would be expected in a field experiment of this scale, barring some operational and hydration issues, continuous polymer injection has been achieved. As of September 30, 2022, a total of 1.41 million lbs. of polymer or 2.99 million bbls of polymer solution (~18.8% of total pore volume), placed in the pattern serves as an effective indicator of polymer injectivity. During the first half of the pilot period, water cut (WC) drastically reduced in both producers and over the entire duration, the deemed EOR benefit over waterflood was in the range of 700-1,000 bopd, and that too at a low polymer utilization of 1.7 lbs./bbl. Low concentration polymer breakthrough was observed after 26-28 months, which is now stabilized at 600-800 ppm in congruence with the WC. Although as indicated by laboratory experiments, polymer retention in core material is high; ~70% of the injected polymer propagates without any delay, while the remaining 30% tails over several PVs. History matched simulation models consistently forecasts polymer recovery of 1.5-2 times that of waterflood, and when integrated with the economic modeling tool, establish the economic profitability of the first ever polymer flood field pilot. Produced fluid experiments provide operational guidance for treating emulsions and heater-treater operating temperature. Over a duration of ~4.5 years important outstanding technical issues that entail polymer flooding of heavy oils have been resolved, which forms the basis of the success story summarized in the paper. The first ever polymer pilot is deemed as a technical and economic success in significantly improving the heavy oil recovery on ANS. The pilot has provided impetus to not only apply polymer EOR throughout the Milne Point Field, but has paved the way for additional state-funded research targeting even heavier oils on the ANS. The combined success of this work and the future work will contribute to the longevity of the Trans Alaska Pipeline System (TAPS)

    Loss of ACS7 confers abiotic stress tolerance by modulating ABA sensitivity and accumulation in Arabidopsis

    Get PDF
    The phytohormones ethylene and abscisic acid (ABA) play essential roles in the abiotic stress adaptation of plants, with both cross-talk of ethylene signalling and ABA biosynthesis and signalling reported. Any reciprocal effects on each other's biosynthesis, however, remain elusive. ACC synthase (ACS) acts as the key enzyme in ethylene biosynthesis. A pilot study on changes in ACS promoter activities in response to abiotic stresses revealed the unique involvement in abiotic stress responses of the only type 3 ACC synthase, ACS7, among all nine ACSs of Arabidopsis. Hence an acs7 mutant was characterized and its abiotic stress responses were analysed. The acs7 mutant germinated slightly faster than the wild type and subsequently maintained a higher growth rate at the vegetative growth stage. Ethylene emission of acs7 was merely one-third of that of the wild type. acs7 exhibited enhanced tolerance to salt, osmotic, and heat stresses. Furthermore, acs7 seeds were hypersensitive to both ABA and glucose during germination. Transcript analyses revealed that acs7 had elevated transcript levels of the stress-responsive genes involved in the ABA-dependent pathway under salt stress. The ABA level was also higher in acs7 following salt treatment. Our data suggest that ACS7 acts as a negative regulator of ABA sensitivity and accumulation under stress and appears as a node in the cross-talk between ethylene and ABA

    Valorization of Napier grass via intermediate pyrolysis: Optimization using response surface methodology and pyrolysis products characterization

    Get PDF
    This study presents first optimization report on pyrolysis oil derived from Napier grass. Effects of temperature, heating rate and nitrogen flow rate on the intermediate pyrolysis of Napier grass biomass in a vertical fixed-bed tubular reactor were investigated collectively. Response surface methodology with central composite design was used for modelling the process and optimization of the process variables. Individual second order polynomial model was found to be adequate in predicting bio-oil, bio-char and non-condensable gas yield. The optimum bio-oil yield of 50.57 wt% was recorded at 600 �C, 50 �C/min and 5 L/min nitrogen flow. The bio-oil obtained throughout this study was two-phase liquid, organic and aqueous phase. The bio-oil, bio-char and non-condensable gas were characterized using standard analytical techniques. The results revealed that the organic phase consists of hydrocarbons and various benzene derivatives, which can be further processed into fuels and valuable chemicals. The aqueous phase was predominantly water, acids, ketones, aldehydes and some phenolics and other water-soluble organics. The non-condensable gas was made up high hydrogen/carbon monoxide ratio suitable for liquid fuel synthesis via Fischer-Tropsch Synthesis. The bio-char was a porous carbonaceous material with high energy content, which can be applied as a solid fuel, adsorbent or source of biofertilizer. This study demonstrated that Napier grass biomass is a viable feedstock for production of high-value bioenergy precursors

    Measurement of (anti)deuteron and (anti)proton production in DIS at HERA

    Get PDF
    The first observation of (anti)deuterons in deep inelastic scattering at HERA has been made with the ZEUS detector at a centre-of-mass energy of 300--318 GeV using an integrated luminosity of 120 pb-1. The measurement was performed in the central rapidity region for transverse momentum per unit of mass in the range 0.3<p_T/M<0.7. The particle rates have been extracted and interpreted in terms of the coalescence model. The (anti)deuteron production yield is smaller than the (anti)proton yield by approximately three orders of magnitude, consistent with the world measurements.Comment: 26 pages, 9 figures, 5 tables, submitted to Nucl. Phys.

    High-E_T dijet photoproduction at HERA

    Get PDF
    The cross section for high-E_T dijet production in photoproduction has been measured with the ZEUS detector at HERA using an integrated luminosity of 81.8 pb-1. The events were required to have a virtuality of the incoming photon, Q^2, of less than 1 GeV^2 and a photon-proton centre-of-mass energy in the range 142 < W < 293 GeV. Events were selected if at least two jets satisfied the transverse-energy requirements of E_T(jet1) > 20 GeV and E_T(jet2) > 15 GeV and pseudorapidity requirements of -1 < eta(jet1,2) < 3, with at least one of the jets satisfying -1 < eta(jet) < 2.5. The measurements show sensitivity to the parton distributions in the photon and proton and effects beyond next-to-leading order in QCD. Hence these data can be used to constrain further the parton densities in the proton and photon.Comment: 36 pages, 13 figures, 20 tables, including minor revisions from referees. Accepted by Phys. Rev.

    Antimicrobial resistance among migrants in Europe: a systematic review and meta-analysis

    Get PDF
    BACKGROUND: Rates of antimicrobial resistance (AMR) are rising globally and there is concern that increased migration is contributing to the burden of antibiotic resistance in Europe. However, the effect of migration on the burden of AMR in Europe has not yet been comprehensively examined. Therefore, we did a systematic review and meta-analysis to identify and synthesise data for AMR carriage or infection in migrants to Europe to examine differences in patterns of AMR across migrant groups and in different settings. METHODS: For this systematic review and meta-analysis, we searched MEDLINE, Embase, PubMed, and Scopus with no language restrictions from Jan 1, 2000, to Jan 18, 2017, for primary data from observational studies reporting antibacterial resistance in common bacterial pathogens among migrants to 21 European Union-15 and European Economic Area countries. To be eligible for inclusion, studies had to report data on carriage or infection with laboratory-confirmed antibiotic-resistant organisms in migrant populations. We extracted data from eligible studies and assessed quality using piloted, standardised forms. We did not examine drug resistance in tuberculosis and excluded articles solely reporting on this parameter. We also excluded articles in which migrant status was determined by ethnicity, country of birth of participants' parents, or was not defined, and articles in which data were not disaggregated by migrant status. Outcomes were carriage of or infection with antibiotic-resistant organisms. We used random-effects models to calculate the pooled prevalence of each outcome. The study protocol is registered with PROSPERO, number CRD42016043681. FINDINGS: We identified 2274 articles, of which 23 observational studies reporting on antibiotic resistance in 2319 migrants were included. The pooled prevalence of any AMR carriage or AMR infection in migrants was 25·4% (95% CI 19·1-31·8; I2 =98%), including meticillin-resistant Staphylococcus aureus (7·8%, 4·8-10·7; I2 =92%) and antibiotic-resistant Gram-negative bacteria (27·2%, 17·6-36·8; I2 =94%). The pooled prevalence of any AMR carriage or infection was higher in refugees and asylum seekers (33·0%, 18·3-47·6; I2 =98%) than in other migrant groups (6·6%, 1·8-11·3; I2 =92%). The pooled prevalence of antibiotic-resistant organisms was slightly higher in high-migrant community settings (33·1%, 11·1-55·1; I2 =96%) than in migrants in hospitals (24·3%, 16·1-32·6; I2 =98%). We did not find evidence of high rates of transmission of AMR from migrant to host populations. INTERPRETATION: Migrants are exposed to conditions favouring the emergence of drug resistance during transit and in host countries in Europe. Increased antibiotic resistance among refugees and asylum seekers and in high-migrant community settings (such as refugee camps and detention facilities) highlights the need for improved living conditions, access to health care, and initiatives to facilitate detection of and appropriate high-quality treatment for antibiotic-resistant infections during transit and in host countries. Protocols for the prevention and control of infection and for antibiotic surveillance need to be integrated in all aspects of health care, which should be accessible for all migrant groups, and should target determinants of AMR before, during, and after migration. FUNDING: UK National Institute for Health Research Imperial Biomedical Research Centre, Imperial College Healthcare Charity, the Wellcome Trust, and UK National Institute for Health Research Health Protection Research Unit in Healthcare-associated Infections and Antimictobial Resistance at Imperial College London

    The Amsterdam Declaration on Fungal Nomenclature

    Get PDF
    The Amsterdam Declaration on Fungal Nomenclature was agreed at an international symposium convened in Amsterdam on 19–20 April 2011 under the auspices of the International Commission on the Taxonomy of Fungi (ICTF). The purpose of the symposium was to address the issue of whether or how the current system of naming pleomorphic fungi should be maintained or changed now that molecular data are routinely available. The issue is urgent as mycologists currently follow different practices, and no consensus was achieved by a Special Committee appointed in 2005 by the International Botanical Congress to advise on the problem. The Declaration recognizes the need for an orderly transitition to a single-name nomenclatural system for all fungi, and to provide mechanisms to protect names that otherwise then become endangered. That is, meaning that priority should be given to the first described name, except where that is a younger name in general use when the first author to select a name of a pleomorphic monophyletic genus is to be followed, and suggests controversial cases are referred to a body, such as the ICTF, which will report to the Committee for Fungi. If appropriate, the ICTF could be mandated to promote the implementation of the Declaration. In addition, but not forming part of the Declaration, are reports of discussions held during the symposium on the governance of the nomenclature of fungi, and the naming of fungi known only from an environmental nucleic acid sequence in particular. Possible amendments to the Draft BioCode (2011) to allow for the needs of mycologists are suggested for further consideration, and a possible example of how a fungus only known from the environment might be described is presented
    corecore